
-
VOL. 1, No. 4 16 PAGES $1.50

PEOPLES

(NEW FORMAT: Subscribers who have been punching their copies for binder should
put holes in open end of booklet, opposite to previous practice.)

PAGE 2 TRS-80 COMPUTING 1:4
For those who need a more thorough

introduction, we recommend the following
. (partial) list of books:

PEOPLE'S PASCAL II Programming in Pascal; Grogono
Addison-Wesley, 1978

Pascal: User Manual and Report; J en­
sen and Wirth, Springer-Verlag, 1974

A Primer on Pasc al; Conway, Gries and
Zimmerman; Winthrop Publishers,
1976

USER'S MANUAL, FOR TRS-80
By KIN-MAN CHUNG
And HERBERT YUEN

(The authors wrote, in the September,
October and November "Byte" magazine,
a three-part article titled: "A 'Tiny'
Pascal Compiler", including listing for
North star Basic. Since the"Byte" series,
they have re-written their tiny Pascal
operating system in tiny Pascal, and
compiled it into Z80-native code, for
TRS-80.)

PEOPLE'S PASCAL
OPERATING SYSTEM'S

Your 'Tiny' Pascal system, hereafter
called People's Pascal II, is a complete,
self-contained operating system for creat­
ing, compiling, running, saving and load­
ing Pascal programs for the TRS-80.
<Alce you have loaded People's Pascal II,
·you never need leave the operating system.
The People's Pascal II system is com-
posed of three inter-related sections:
Monitor: this is the sub-system which

provides run-time support, checks for
errors, and provides the necessary
utilities to save and load pr ograms to
and from cassette tape .

Compiler: this is the program which com­
piles your Pascal . source program into
P-code, ready to be executed. The com­
piler also checks for syntax errors.

Editor: the editor is used to create or
modify People 's Pascal source pro­
gr ams.

All these sub-systems are loaded simul­
taneous ly, and are always present in RAM,

PROGRAM

.~

BLOCK

CONSTANT

- -.i STATl;MENT 1---,.----+1 ENO ~---

CONSTANT

BLOCK

COMPILER SPECIFICS:
Maximum number of procedure or fun­

ction parameters is 15; maximum num­
ber of procedure nestings is seven
levels; the symbol table is r estricted
to 75 (200 for the big version).

":=" is used for assignment and "=" is
used for equality. They are not inter-
chang~al>le! _ ____ ______ ·_ .

";" is used to separate statements, not to
end statements. Thus the last " ;" in a
compound statement:

BEGIN STATEMENT
STATEMENT;
IF>EXPA THEN >EXP< ELSE
>EXP< ; STATE MENT;

END
is not neces sary .. Ifis, however, allow­
ed s ince a Pascal statement can be a
null. Note also the absence of " ;" be­
fore an ELSE or an END in the " CASE"
s tatement.

Expressions may be e ither arithmatic or
logical (Boolean). Thus, the following
are perfect ly legal_:

A:= B < C;

IF A+B THEN

unless you choose to overwrite portions ____ _ _ _ _

Note also that the Boolean operator "OR"
has the same precedence as the arith­
ematic operator "+" and "-"; "AND" the
same as "*'' and "DIV", etc. It is impor­
tant to r emember that "OR" and " AND"
have pr ecedence over " =", ">" •etc, thus
the need for br ackets at t imes as shown
below:

IF (A > 10) AND (A < 5) THEN .. .
to free memory space.

. MINIMAL SYSTEM requirements are:
Level II, 16K RAM! '

The first sections of this users' manual
will discuss in detail the three subsystems,
what they do, and how to use them. The
next section will deal with the specific
aspects , limitations and enhancements to
People's Pascal II; then follows a chapter
on getting started, to help you get through
the fir st time you bring People' s Pascal
up. Finally, you will find the error codes,
syntax diagrams, and the sample pro­
grams.
PEOPLE'S PASCAL
MONITOR:

All operations make at least s ome use
of the monitor, hence we will begin our
discussion of the People's Pascal II sys­
tem with it.

The monitor provides run-time support
to the entire system , as well as providing
you with a means of saving or loading
both source programs , and P-code pro­
grams from or t o cassette tape . . From the '
monitor one also gives the command to
compile a program, or to run that pro­
gram once it has been compiled. You also
invoke the editor from the monitor. Below
is a list of the monitor commands and
what they do:

E Edit old source file or create a

c

C/ - P

c/-s

R
R/-C

new one.
Compile sour ce program into P­
code, ready to be executed. P-code
is placed after source in RAM.
Compile s ource, but do NOT~gen- ·
erate P- code (useful to check for
syntax er rors) . .
Compile sour ce, and overwr ite
the source program (used when
you have very large progr ams)
Run the compiled program.
Run the compiled program and
overwrite the editor and compiler .

LS)filename« Load sour ce program
·from cassette.

LP >filename< Load P-code pr ogr.am
from . casse.tte.

WS >filename< Save source program to
cassette.

WP >filename < Save P-code progr am
to c·assette. .

It should be noted that you are given the
ability to over write s ections of the Peo­
ple ' s Pascal system if you need the space
for large programs. However , you must
remember that they are "gone" and you
must re-load the entire system again if
you are to use them further .

It should als o be noted at this time that
a filename can be at most s ix (6) char­
acter s long. Er rors will r es ult if this is
not adher ed to.

T HE P E O P L E ' S PAS CAL
E DIT OR:

The text editor provided with your
People ' s Pascal package enables you to
create and modify s ource programs .

The text editor is line oriented, but,
unl ike Basic, does not use line number s .
The maximum number of lines of text
that you can have is 600 , and the maximtan
line length is 130 characters.

All editor commands are s ingle char­
acters ; some ' may have numer ic ar gu­
ments following them, or a character
string.

VARIABLE'

The statement:---
. IF A > 10 AND (A < 5) THEN .. .

would be parsed as :
------•..ii IDENTIFIER r-1---~-----------------~---•

~ ,,.,,.,,., ~
IF A > (10 AND (A < 5)) THEN •. .

thll_~ _ produc!zig_til~ 11!1.c:te.s_!rable .. result.
Ther e are some context.:.sensitive rules -

and meanings that cannot be inferred
from the syntax diagr ams , and may be
particular to this implementation:

In our discussion of the editor, "xx"
r efers to integer numbers (1-999), and
>string,< r efer s to a string.

Each · command ends with a >'er <, car­
riage r eturn C'ENTER" on your TRS-80
keyboard). Invalid commands are flagged
with the message "ILLEGAL" .

The line pointer always points at the
line most r ecently displayed or modified,
or ins erted. After a Delete command, the
line pointer is moved up one line.

Below is a list of the editor commands.
Notei "*'' means ent irely or " all the way" :

>Cr< A carriage r eturn on an em­
pty line will exit from insert
mode .

PRINTP
Pxx

Print the current line.
Print xx lines s tarting from
current l ine

Up
P *
u
Uxx
U*

Print enth·e file
Move up one line
Move up xx lines.
Move up to top of fir s t line
of file.

NEXTN Move line pointer to next line
(down).

Nxx 'MOve · line pointer down xx
lines.

N* Move l ine pointer to last line
of file .

Delete D Dele~ curr ent liJ:).e.
Dxx Delete xx l ines s tarting at

current l ine .
D* Delete entir e file (i.e., "sc­

Insert I
r atch").
Enter insert mode (remem­
ber , you exit with a >.er <
Inser t lines after current line
pointer. A " ?" is displayed to
prompt you.

Replace R>st.< Replace the current line
by >string< .

Extend X The current line is displayed
and the cursor is at the end
of the line , more character s
can be appended to the end
(similar to Basic).

status S status of current filt> display­
ed includes: number of lines,
file location, pos ition of line
pointer .

QUIT Q Retur n to People ' s Pascal II
monitor .

'rhe editor als o recognizes two special
keys :

(-, the back arrow, for backspace, and
-), the r ight arrow, for tab, which is

thr ee spaces .
These two keys may be used at any time
for editing a command or input file .

EJ>.'})anding on this : if you want to enter
a pr ogram, you would type "E"· from the
monitor , then you would type "I" for in­
sert . You then can enter text. To stop
entering text, you type a blank carriage
r etur n on an empty l ine.

Hint: When "MEMORY F ULL" error oc­
eur s while editing or insert ing, the source
is too big.

/

You should play with the eidtor a while
to make sur e that you completely under­
stand its oper ation.
PEOPLE'S PASCAL
COMPILER:

.ttoughly speaking, a compiler is a pro-
gram that ti:@~~~te_!?_lh~_§.t!J.~ill-~l!l~§._9f.a __
_high-level language into an equivalent
progr am of machine- readable form.

People's Pascal II tr anslates the high­
level source pr ogram into an interme­
diate file called P-code.

P-code is then interpreted, using the
r un- time monitor for support.

The r esult is programs which execute
at least four t imes faster , and up t o e ight
t imes faster than Basic!

People ' s Pascal II is a subset of stan­
dard Pascal. The syntax is essentially
identical to its larger brother. Syntax
diagrams have been included for those
who are jus t now learning the language.

It must be emphasized that this manual
is not an ' instructional text on Pas cal
progr amming, but r ather an expl anation of
the limits and special featur es of People ' s
Pascal. However , we will review some
essential points in the next sect ion.

" C' and ")" are used in the TRS-80
implementation instead of " [" and" l".

Identifier names must start with a let­
ter and may be followed with letters
or digits, but only the first four
characters are significant. However ,
r eser ved words must be typed infull.

Identifier s must be declared before
used. Identifiers can be declar ed
twice, but only the last one is used.
Formal parameters of a procedure
need not (and should not) be declared
again inside the pr ocedure.

Parameters ·are passed to procedures
or functions by value , i.e ., a copy of
the value of the parameter by the
program before the call.

The scope rules for identifier s are the
same one s used by any block- st ruc­
ture language. The scope of a variable
is the procedur e that contains it. An
inner procedur e can r eference a var ­
iable in an outer procedure.

The only data types People ' s Pascal
supports are integer s are one­
dimensional integer arrays. The in­
teger s are 16- bit s igned, the arr ays
start at O. Ar r ays are NOT checked

SYNTAX DIAGRAMS for People ' s P~scal, a Pascal subset. C.uts above and below,
and on page 3, courtesy Byte magazine , from September '78 issue the fir st of
the three-part se~ies, "A 'Tiny' ~ascal Compiler", by Kin-Man Chung and Her­
bert Yuan. Copyright Byte magazme , used with permission.

FACTOR

---~-----t~ CONSTANT !-------- ------------------ --
I "--...i VARIABLE

- --..i !'UNCTION
IOENTIFIER)--~-.! EXPRESSION t--- - - .-1

'----~NOT l---.C FACTOR

EXPRESSION 1-----M J)-- ----- -

CONSTANT

- - ---..... .--- - ---.l: IDENTI FIER :I---""---..,.,,--~---

I\. I · l . , '--- -----+t-1 INTEGER 11---- --...-,

'"- -----.i-: STR ING :1--- - - ---•-._
\..

I HEX INTEGER I

Continued: Notice that some of the diagrams, for example Fact.or, co~t~i.n
themselves in their own definitions. This is known as a recursive defm1hon.

EXPRESSION

SIMPLE EXPRESSION

SIMPLE EXPRESSION

TERM

TERM

IDENTIFIER

INTEGER

c ·~ J ..

STRING

~~~·()~~~c~---_~·_c_cH-A-RA-C-TE_R_)~_-_-~)~--i•()1--~-

HEX INTEGER 

HEXADECIMAL 
DIGIT 

HEXADECIMAL 
DIGIT 

for " s ubs cript out of range" at run­
time . 

The meaning of certain operations is: 
A DIV B -truncated integer, division: 

27 DIV 5 = 5 
A MOD B - A - (A DIV B)*B 

27 MOD 5 = 2 
A SHL B -LEFT SHIFT A BY B 

27 SHL 2 = 54 
A SHR B -RIGHT SHIFT A BY B : 

27 SHR 2 = 13 
The built-in array MEM can be used to 

read to (if it appears in the left s ide 
of an assignment) or from (if it 
appears in an expression) to or from 
(if it appears in an expression) to or 
from a specified memory location, 
such as: . 

A := MEM (24467) +3; 
MEM (T) := O; 

A second form of the MEM function 
is "MEMW''. This enables a two-byte 
word to be r ead to or from m emory 
using the same convention as for 
"MEM". Note : the low-order byte 
comes first, in accordance with 
INTEL convention. 

Hex const ants are prefixed by % 
(e .g., %2AOO). 

Strings are enclosed by s ingle quote 
(' ) , not double . When a s tring appears 
in an expr ession or as a CASE lable, it 
has the value equal to the ASCII value 
of the first character of the string. 
When a s tring appears in the WRITE 
statement, the entire string would be 
outputed. Such as : 

X := ' ABCD' X would = ' A' = 65 
The READ and WRITE s tatements are 

character-oriented, not line-orien­
ted. More than one character can be 
placed in the s ame statement. Deci­
mal numbers or Hex number s can be 
read- in from the keyboard by a " #" 
(decimal) or " %" (hex) after the var­
iable in the READ statement. Sim­
ilarly, a decimal integer can be 
printed on the output device by fol­
lowing the expression with the ap­
propriate 11#11 or " %" for Hex. 

READ (A,B,C, Iif,J%) 
This would READ three (3) char­
acters, a decimal number, and-a hex 
number. 

A := 65 
WRITE (' HELLO? ',A,' ',A#,' ' ,A%) 

would pr int: . 
HELLO? A 65 0041 

Since the READ is character-oriented, 
it is necessary to ter minate an in­
teger input by a non- integer char­
acter (such as a >Cr < or >Sp < 
To input a hex number , four (4) 
digits must be typed. 

To write on a new line, it is also nee-

HEXADECIMAL 
DIGIT 

HEXADECIMAL 
DIGIT 

essary to output e>..'Plicitly the ASCII 
code for :>er< and >lf< to the output 
device. That is, you must manually 
insert carriage return : l ine feed. 
Such as: 

WRITE (' THIS IS A TEST',13 ,10) 
(HERE CR= 13, LF = 10) 

An expression in the IF, WHILE, and 
REPEAT statements are said to ful­
fill the condition if the least-signifi­
cant bit is 1/ This is equivalent to 
test that the exI)r ession is odd. Thus 
after: 

IF X THEN A := 1 ELSE A := 100 
A would have the value of 1 if X is 
odd, and 100 if Xis even. 

The r elational operators (e.g. " =" ,"= " 
. .. etc) always produce a value of 0 
or 1. Thus after : 

A:= X = 5; 
A= 1 :F X=5, OTHERWISE A=O 

Comments are delimited by " (* " and 
'' *)'' . 

What follows i s a list of built-in fun­
ctions to the compiler: 

ABS(X) : returns the absolute value 
of X 

SQR(X) : r etur ns square of X 
INP(X) : inputs port X, used as : 

A= INP(X) 
OUTP(X,A) : outputs A to port X 

INKEY : inputs the keyboard, used 
as in: A := INKEY 

PLOT(X, Y,A) : plots graphics to scre~n, 
us ing the X-Y coor di­
nates. If A is odd then 
plot i s " set", if A is even 
then plot is " r eset". 

POINT(X, Y) : just like Basic: returns a 
"1" if the point is filled, 
a 11011 if blank 

MOVE(B,A,N) : move a block of memory 
of N bytes from address 
A to addr ess B. 

Screen control character s are the same 
as TRS-80 Basic . For example , use 
WRITE (23,31) to clear the screen. 

BRIN GING UP P EOPLE 'S 
PASCAL 

In this section of the People ' s P ascal 
user s ' manual, we will go step by step 
from loading the tape the fir st time , to 
running your first program. 

Side one of your tape comes with thr ee 
s ample programs , the firs t is loaded with 
the sys tem, the second is " HILBER" and 
the thir d is " BLOCK" . 

Side two contains the big ver s ion and 
s ource to People ' s Pascal , "PAS32K'' imd 
" COMPS!", r espectively. 

STARTUP 
1) Turn on your machine. When asked for 

MEMORY SIZE, respond by hitting 
the ENTER key. 

2) Type SYSTEM to reach system level. 
TRS-80 will display the prompt: *?. 

3) Make sure that your People's Pascal 
tape is at the start, and type PASCAL 
and then ENTER and turn recorder to 
PLAY. 

4) The tape will begin to load, the star 
will blink every 4 seconds. The entire 
load will take about 3 min. 

5) Once the tape has loaded, type a 11 / 11 

(slash) and ~it ENTER. At t~is point 
you should receive the opemng mes­
sage: 
" TINY PASCAL V-1.0" 

6) At this point you have successfully 
loaded the entire People's Pascal oper­
ating system, and can proceed to the 
next section, below. 

If you did not get this far try load-
ing the tape again, at various volume 
settings. Mark down, on the cassette 
label, the volume setting that was suc­
cesi;iful. If it will not load, and other 
commercial tapes will load, ·return it 
to CIE for r eplacement. 

CREATING A PROGRAM: 
1) From the monitor, type "E" . This will 

place you in the editor. 
You will see one of two messages, 

either: EMPTY FILE ... ENTER 
TEXT,-this is when there is no cur­
rent source program, or you will see: 
a set of statistics on the current file . 

·On the initial load, the s ample pro­
gram is loaded simultaneously. If this 
is your very first try, then skip ahead 
to step 5, otherwise proceed. 

2) To 11 scratch" the sample program which 
is always loaded with the system, you 
simply use the editor command: D*. · 

3) At this point you may enter aprogram, 
4) Once your program is entered, you 

may exit insert mode by hitting an 
ENTER on the next blank line. This 
puts you back in the editor command 
mode. 

5) To return to the monitor, in order to 
compile , etc., you type Q. 

COMPILING, RUNNING 
SAVING I LOAD ING 
A PROGRAM: 
1) Normally, to co_mpile a source pro­

gram, you type C from the monitor. 
This creates P-code. If you have any 
syntax errors, they will show up he re. 

If you have syntax errors, -the er­
ror lis t on the back of this manual 
will tell you what they are. You should 
then go back and re- edit the exist ing 
source file , correcting the syntax er­
r ors, before re- compiling. ' 

2) Once you have successfully compiled 
the progr am, you may run it by typing 
R from the monitor. 

3) To save the program, or the P- code, 
You :µiay · use the appropriat e monitor 
commands . Or you may load a pre­
viously-saved program. 

Remember, you mus t re-compile a pro­
gram if you make a change in it! 

SPECIAL NOTES: 
It should be noted that the BREAK key 

equals a temporary stop of program ex­
ecution, and that any other key re- starts 
it. If you hit BREAK twice in a row, you 

TRS-80 COMP UTING 1:4 PAGE 3 
will terminate the run, and return to the 
People's P ascal monitor (like a control­
C on most other systems). 

One should also note that, once a pro­
gram has been compiled,. only the P-code 
(that is, the compiled program) need be 
loaded for execution. In other words, it 
is not necessary to compile before each 
execution if you have saved the P-code 
on tape. · 

When error 1001 is encountered during 
compilation, there ,is not enough memory. 
You s hould try using C/ -P. !3e sure to 
save the source first! 

When MEMORY F ULL error occurs on 
running the program, either cut down ar­
ray size, or try us ing R/-C option. 

We know that you will enjoy using Peo­
ple' s Pascal, and recommend that you 
"play" with it a while just to get the feel 
for it , and to become familiar with all of 
its features. _ ·- _ . __ 

USING THE- 'BiG 1 PASCAL 
ON SIDE (B): 

On side two of your tape is an expanded 
People's Pascal compiler. That is, it can 
handle larger programs. You will need 
at least 36K RAM to use it. 

To use, simply follow the directions " On 
Bringing Up People's Pascal" , except 
substitute PAS32K for PASCAL. 

The source to the compiler is immed­
iately after PAS32K on side B. It is called: 
COMPS!. You can then "play" with the 
s ource to the compiler. Note: you will 
need at least 36K to compile the com­
piler. 
IMPORTANT: Source programs are not 
interchangeable between the two compil­
ers. That is, a program created using 
the big compiler can NOT be used with 
_the _ normal · comoiler. · and vice versa. 

ERROR CODES: 
l error in simple type 
2 identifier expected 
3 "program" expected 
4 ) expected 
5 : expected 
6 illegal symbol 
7 error in parameter list 
8 OF expected 
9 ( expected 

10 error in type 
11 ( expected 
12 ) expected 
13 END expected 
14 ; expected 
15 integer expected 
16 = expected 
1 7 BE GIN expected 
18 error in declaration part 
19 error in field-list 
20 , expected 
21 * ·expected 

50 error in constant 
51 := expected 
52 THEN expected 
53 UNTIL expected 
54 DO expected 
55 TO/ DOWNTO expected 
56 IF expected 
57 FILE expected 
58 error in factor 
59 error in variable 

101 identifier declared twice 
102 low bound exceeds high bound 

ELEMENTARY CONSTRUCTS for Pascal subset, cont. : Hexinteger is usually 
not defined in Pascal but is used here so that actual memory location can be 
easily manipulated. Copyright Byte magazine, used with permission. 

STATEMENT 

VARIABLE EXPRESSION!----------------------~~-

STATE MENT 1---".__-------'"l 

STATEMENT l-------------------1 

EXPRESSION 1-- - - --- - --- - - ----"I 

1:.XPf:f£SSION STATEMENT 

EXPRESSION 

EXPRESSION EXPRESSION !-------------- -



r.tu.i~. '* .Ltt:;-l:SU COMPUTING 1:4 

103 identifier is not of appropriate class 
104 identifier not declared 
!)% SIGN NOT ALLOWED 
106 number expected 
107 incompatible subrange. types 

108 file not allowed here 
109 type must not be real 
110 tagfield type must be scalar 
111 incompatible with tagfield type 
112 index type must not be real 
113 index type must be scalar 
114 base type must not be real 
115 base type must be scalar 
116 error in type of standard procedure 

parameter 
11 7 unsatisfied forward reference 
118 forward reference type identifier in 

variable declaration 
119 forward declared; repetition not al-

lowed 
120 function result type must be scalar 
121 file value parameter not allowed 
122 forward declared function, repetit-

ion not allowed 
123 missing result type in function de­

claration 
124 F-format for real only 
125 error in type of standard function 

parameter 
126 number of parameters does not 

agree with declaration 
127 illegal parameter substitution 
128 result type of parameter function 

does not agree with declaration 
129 type conflict of operands 
130 expression is not of set type 
131 tests on equality allowed only 
132 strict inclusion not allowed 
133 file comparison not allowed 
134 illegal type of operand 
135 type of operand must be Boolean 
136 set element type must be scalar 
137 set element types not compatible 
138 type of variable is not array 
139 index type is not compatible with 

declaration 
140 type of variable is not record 
141 type of variable must be file or 

pointer 
142 illegal parameter substitution 
143 illegal type of loop control variable 
144 illegal type of expression 
145 type conflict 
146 assignment of files not allowed 
147 label type incompatible with select-

ing expression 
148 s ubrange bounds must be scalar 

_ 149 index type must not be integer 
150 assignment to standard function is 

not allowed 
151 assignment to formal function is not 

allowed 
152 no such field in this record 
153 type error in read 
154 actual parameter must be a variable 
155 control variable must neither be 

formal nor non-local 
156 multidefined case label 
157 too many cases in case ~at~ment _ 
158 missing corresponding variant dee • 

laration 
159 real or string tagfields not allowed 
160 previous declaration was not for-

ward 
161 again forward declared 
162 p arameter size must be constant 
163 missing variant in declaration 
164 substitution of s tandard procedure/ 

function not allowed 
165 multidefined label 
166 multideclared label 
167 undeclared label 
168 undefined label 
169 error in base set 
1 70 value parameter expected 
1 71 standard file was r .edeclared 
172 undeclared external file 
173 (not relevant) 
174 Pascal procedure or function ex-

pected 
1 75 missing input file 
176 missing output file 
201 error in RREAL constant: digit 

expected 
202 s tring cons tant must not exceed 

s ource line 
203 integer constant exceeds range 
204 (not r elevant) 
250 too many nested scopes of iden­

tifiers 
251 too many nest ed procedures and/ or 

functions 
252 too many forward r eferences of 

procedure entries 
253 procedure too long 
254 too many long· constants in this 

procedure 
255 too many errors on this s ource line 
256 too many external r eferences 
257 too many externals 
258 too many local files 
259 expression too complicated 

300 divis ion by zero 
301 no cas e provided for this value 
302 . index expression out of bounds 
303 value to be assig·ned is out of bounds 
304 elem ent expr ession out c>f range 

398 implem entation r estriction 
399 variable dimens ion arr ays not im­

plemented 
1000 . missing 
1001 out of m emory 

USEFUL CALLS, ADDRESSES 
INSIDE THE MONITOR: 

Below is a list of useful addresses for 
those who may wish to use them. 
address function 
4180 (hex) starting address of source 
4182 ending address of source 
4184 start of P-code 
4186 end of P-code 
4188 address of editor 
418A address of compiler 
418C start address of user source 

program 
418E address of run-time stack 
4190 ending address of run-time 

stack 
4192 end of memory address (7FFF 

for 16K) 
4194 monitor entry point 
4196 address of program currently 

executing 
4198 complement of contents of 

418E 
419A overflow message flag -

default O 
- - - - I /O CALLS - - - -

41AO console in 
41A2 cons ole out 
41A4 INKEY (input the keyboard­

CR [ENTER.] not needed) 

(t SAMPLE TINY PASCAL PR05RAM SY H. YUEN 

BEGIN 
X0 ==13000; Y8 ==l8000; F==Ll ; 
REPEAT X= =X8; Y==YQ ; WRITE(L5.2S, 3L ); 

FOR K==l TD 1800 DO BE&IN 
X==X+Y oru 4; Y= =Y-X DIU 5; 
PLOTCX SHR S. Y SHR S,L) END; 

X0 ==X0+XO D!U F; Y9 ==Y0+Y0 OIU F; 
_...,F==F+F OIIJ 6 
UNTIL F>?B; WR!TECZS. 31. ' THE SHO~ IS OUE = 

END . 

ci SAMPLE TINY PASCAL PROGRA~ BY H. YUEN 1. 

UAR X0> Y0,X,Y,KJF =!NTEGER; 
BEGIH 

X0 = =L33~0; Y0 = =i8g~g ; F==il; 
REPE~T X==X0; Y==Y0; WR!TE(LS,28; 31) ; 

FOR K=:L TO 1900 OD BEGIN 
X==X+Y DIV 4; Y==Y-X OIU 5; 
PLOT<.X SHR 8,Y SHR 8,1 ) ENO; 

X8 ==Xq+xe DIV F; Y0 ==Y0+Y0 DIV F; 
F==F+F Oi iJ 6 

UNTIL F) 7f..f.; WRlTEi:z::: .. 3t, 'TH~ SH(n,, IS !jtJ£R' 
mo . 

<:PLOT HILBERT CURUES OF ORDERS l TO Ni> 
CONST H=4 / H0=32; 
IJA.~ r, H, x. 't' .. :<0. va, u. 'J =INTEGER; 
PRfJC l'l.OIJE; 
IJAR L J: lNTEEER ; 

FUHC l'l.INUL S); 
BEGIN IF A>B THEN MlN ==B ELSE M!N ==A ENO; 

FUNC MAX<~. B); 
BEGIN IF A(B THEN MAX==S ELSE MAX==A END; 

BEGIN FOR I ==MJNC( .IJ) TO i'h1X( X,!Jl DO 
FOR J: =M!IW(, IJ) TO i'tAX('I' , IJ) DO 

, PLOHLJ,l); 
U==X; I) : =Y 

END; 

PROC P<TYP, I); 
BEGIN IF 1>0 THEN 

CASE TYP OF , 
L= BEGIN P(4 , I-l l; X==X-H; MOUE; 

P<L !-l); 't= ='t-H; MOUE ; 
P<L.!-1 ); X==X+H; MOUE ; 
PC:. I - !.) EHD; 

2= BEGIN P(l,[-L) ; Y==V+H; MOUE; 
P(2,l-L ); X==X+H; MOUE; 
P<2, !-1); '(= =Y-H; M.OlJE; 
P< L I-L> ENO .: 

3= .BEGIN PC2. ! -1 ); X==X+H; MOUE; 
PC3.l- l) ; Y==Y+H; MOUE; 
PCLI- U ; :< ==X-H ; M')'JE.' 
P(4 , I-U EHD; 

4= BEGIN PCl.I-L> ; Y= =Y-H ; MOUE; 

EHO 
END; 

PC4.l-Ll; X==X-Hi MOUE; 
P(4)l-l); Y==Y+H ; MOUE; 
P<3, I-L> END 

BEGIN ( :t:MA!Nt) 
WRITECL5.2S,3L,L3.' HILBERT CURVES' ); 
l ==O; H==HO; X0 ==H OIU 2; YB ==X3; 
REPEAT l ==I+li H==H OI'J 2; 

X0 ==X0+H OIU 2; YB ==YB+H DIV 2; 
X==XO+( I-1>*32; Y==Y0+10; U = = l~; U-=Y; 
P< LI) 

UHT!L I=H 
ENO . 

(tBLOC!<AOE. BY K ' ti. CHIJN'i ' 4/ 26/ nn 
UAR l,J,SPEEO,ABORT.BLNK =INTEEER; 

SCORE.~ARK,MOUE,CIJR~QR = ARRAY(ll OF INTEGER ;, 
PROC PSCORE; 

BEGI N WRITE<SCORE<Bl#) ; 
MEMW.< :•4020) : ::~3FFE; ( :t:SET CIJRSORt i 
WRITE(SCORE( L)#) ENO; 

E'ROC SUNK ; 
UA~ T,K , OELAY =INTEGER ; . 

BEG IM T: =CURSOR< I >-MOUE< I >; 
FOR K==l TO 30 00 BEGIN 

FOR OEL~Y : = l TO 10::'.t 00; 
IF MEMW<T>=SLNK THEN MEMW<T> ==MAR KC I > 

8-SE MEMW<T>==BLNK 
EHO 

BEGIH WRITE<'SPEEO(l-10 ) ' >; 
REAOCSPEEO# ); SPEEO ==SPEED118; . 
l'IARK<€t> ==':t:'+':i; ':3HL S; MARK< l) : :' ( ' +' >'SHL :3; 
BLNK==' '+' ' SHL S; 
SCORE< 0): =0; SCORE< l>: =O; 
REPEAT WRI TEC15.Z8.31); C:t:TURN O~F CIJRSOR. CLEAR SCREENt ) 

FOR I ==9 TO 117 OD BE&!N 
PLOT< I, L 1); PLOH L 45, U EHCI .; · 

FOR 1=%1 TO 45 00 BEliIN 
PLOTC3, LU; PLOT( 1!), LU; 
PLOTUl6. L l); PLOT(l1.7, Lt> END ; 

CURSOR<0>==%3C~0+64t4+1Z; 
CURSOR<l>==%400B-64t4-16; 
FOR J==0 TO l OD MEMW(CURSOR(J) )= =MARKCJ ); 
!'fOVE( 0) = =64 ; M•JUE( l) : =-64 .: 
l •=L; ABORT ==0; PSCORE; 
REPE1H UMTlL INKEYOIJ; ( :l:H!T KEY TO STA!':T:n 
REPEAT I ==1-I; 

FOR J •=l TO SPEED 00 
CA.SE IN!<EY OF 

'WI : MOIJE( I)) : =-64 .; ' :;I : i'l'}IJE( 0 ): =64 ·' 
'O' :l'fOVE(£t) ==2; ' A' =MO'JE( (t) ::-2 ; 
'0' : l'fOtJE( 1): =-64 ; I ' ' : MGIJE( u : =6J ; 
' ; ':MO•JE(l) : =2; 1 K 1 : f10!JE: (1 )= =-2 

ENO; 
CURSOR< I> : =C'J~:SOR< I )+f10'JE( I) .: 
IF MEMW( CURSOR(! ) )=8LHK THEN M£t1!1l( cu~:sc~~ ( r ) ) : = MA ~.'K( r) 
ELSE BEGIN SCDRECL- I l= =SCOREC1-l >+l ; 

A80RT ==l ; BLI NK END 
UfHIL ABORT 

URTIL SCORE< i-I »= 10 
ENO. 

PEOPLE'S PASCAL II: 

MEMORY MAPS 

l6K UERSlON ·srG· 'JERS l O~~ ( >=32K ) 

4060 4060 
RESERUEO RA~ FOR I 
INTERPRETER ~ MO'llTOR 1 

RESERVED RAl'! FOR 
!NTERPRE1ER ~ MONITOR 

4100 4l00 
ENTRY POINTS TABLE EHTR'l' POI HTS TAB!..E 

4 lS0 4130 
S ~'STEl'l CONTROL BLOCK SYSTEM CONTROL BLOCK 

HA0 4lA0 
l/O ROUTINES l/O RO•JT ll<ES 

4l Efl 41E0 

INTERPRETER; INTERPRETER; 
' RUNTIME ROUTINES RUNTI ME ROIJT!NES 

-
473A 473A 

l'!OtHTOR MONITO~: 

I 
49SE 4990 

USER MEMO~:Y FOR RUNT IME STA GK FQF: 
SOURCE '.. P-CODE EDITOR OR C()!'I!' ILER 

( 4-V2K ) ( 3- l .' 41( ) 

5eca 5690 
RUNT11'1£ STRCK FOR 
EDITOR OR COMPILER ED! TOR P- C>JDE 

( l-3/ 4K i 
62A0 5EAO 

EDI TOR P-COOE COl'!P!LER TABLE 

6QB0 SFCfl 

COl'tPlLEP. TQB!..E COMP!.LER P-CODE 

6B00 73F0 -

COl'IPILER P-CODE USER MEMORY FOR 
SOURCE :i P-CODE 

7FFC 

STATEMENT OF 
WARRANTY 

& 
TRANSFERABILITY 

People ' s Software , P ipe Dream and Super­
s oft di s claim all warranties with r egard 
to the s oftware contained on tape, disk or 
lis ted in manual, including all warrant ies 
or merchantability and fitness , beyond 
sales price pai_d, and r e ject all liability 
for indirect or consequential damages 
aris ing out of or in c01mectio11 with the 
use of People ' s Software . 

TRANSFE RABILITY: 
People ' s Software, Supersoft :md P ipe 
Dream software and manauals ar e s old 
on an individual bas is and no r ights for 
duplication are granted. Title and owner ­
ship of the s oftware s hall at all times 
r em ain with the authors. 



TRS-80 COMPUTING 1:4 PAGE 5 

AN INTRODUCTION TO PROGRAMMING 
Bv CHIP WEEMS 

Graduate Teaching Assistant, Dept. of 
Computer Science, Oregon state Univ. 

Corvallis OR 97331 

(Chip Weems wrote the following for the 
Second West Coast Comprter Fair Pro­
ceedings, and it is considered a very good 
explanation of Pascal. This is still avail­
able for $15 from the Faire, Box 1579, 
Palo Alto CA 94302. We have eliminated 
the author's discussion of record and file 
types, since it deals with features not 
available in People's Pasqal. Since cuts 
really compr omise the integrity of the 
wr iting, we leave in discussion of other 
features not present in People' s Pascal, 
GOTO, labels, READLN, WHITELN. It 
should be pointed out that READ and 
WRITE are present in People's Pascal, 
but in different form. People's Pascal 
documentation, especially the syntax dia­
grams, defines exactly what features are 
present . ED) 

ABSTRACT: 
This paper will concentrate heavily on 

the use of the Pascal language at the be­
ginner's level. A minimal knowledge of 
some other programming language such as 
Fortran, Basic or Algol, is assumed. 

The areas which will be covered are 
simple and structured statements in Pas­
cal, simple and structured (deleted-Ed) 
data types, plus procedures and functions. 
Emphasis will be placed on using Pascal 
statements, although some discussion of 
the power of user-defined data types will 
also be included. 

PART ONE: WHAT IS PASCAL? 
HISTORICAL INTRODUCTION: 

Pascal is not an acronym, unlike many 
languages, the letters which make up its 
name do not stand for anything. This is 
perhaps a first indication that Pascal is 
something different and a little special. 

Pascal was named after the famous 
mathematician Blaise P ascal (1623 - 1662) 
who invented, among other things, an 
eight-digit calculating machine which 
could perform addition and subtr action. 
Multiplication and division were per for­
med by repeated addition or subtraction, 
respectively. He completed the first oper­
ating model at age 19, and built 50 more 
during the next 10 yea.rs. 

The Pascal language was originally 
specified b 1968 by Niklaus Wirth at the 
Institut fur lnformatik , Zur ich. Th is makes 
it a r elative newcomer to the world of 
programming languages. 'I11e first Pascal 
compiler became operational in 1970 and 
was published in 1971. 

The fellowing table shows just how new 
Pascal r eally is , Remember that most 
con1piler s are not intr oduced until three 
to five yea.rs after their init ial specifi­
cation. For example, APL was initially 
specified in 1962. 

Language 
Fortran 
Algol 
Lisp 

Snobol 
Basic 
PL/1 
APL 
Pascal 

Introduction Date 
1957 
1960 
1961 

1962 
1965 
1965 
1967 
1971 

After two years of experience, the lan­
guage was revised and re-released in 
1973. This version of the language is now 
generally referred to as standard Pascal. 
The important thing to note here is that 
Pascal was the first major new language 
to be developed after the concept of struc­
tured programming was introduced. 

STRUCTURED PROGRAMMlliG 
AND PASCAL: 

There exists no exact definition of 
structured programming, although it has 
been termed "A collection of all good and 
wonderful programming pra.ctices0 " One 
fa.ct becomes obvious in discussing it with 
groups of programmers: Some people love 
it, and some people hate it. However, 
those who hate structured programming 
are now finding themselves more often in 
the minority. 

Some features to be found in a struc­
tured program are that it is generally 
more readable and more eas ily shown to 
be c orrect. The design of a structured 
program usually involves s tepwise refine­
ment, or top-down pr ogramming. Lan­
guages designed with s tructured program­
m ing in mind will usually include a la r ge 
gr oup of progr am-flow control structures, 
which are entered at only one point and 
fr om which there is only one exit. Another 
notable point a.bout such l ru1guages is that 
thev often require explicit definition of all 
va;iables ·and dat a structures in the code . 
\Vhat does all of this mea.'1? How does it 
rel ate to P ascal? 

IN PASCAL 
READABILITY: 

One of the outstru1ding features of Pascal 
is that well-written Pa.seal code is very 
readable; more so than most other pro­
gra..'nming languages. Probably the great­
est single factor which makes this lan­
guage so easy to follow, is the construc­
tion of data names. In Pascal there is no 
limit to the acceptable length of names. 
Generally, the compiler only uses the 
first eight characters of a name to dis­
tinguish it from all others , vvith the re­
mainder of the name simply being ignored. 
This lack of constraints usually leads to 
very meaningful names in Pa.seal. Note 
that I have specifically avoided writing 
"variable names". Pascal permits not on­
ly variables to be named, but also con­
stants, files, records, complex data struc­
tures, procedures and functions; all with 
the same naming conventions in effect. 
Compare this to any other languages such 
as Ba.sic or Fortran! 

Pa.seal's readability is also enhanced 
by the wording of its statements. When 
meaningful names are us ed, almost al­
ways the coded s tatements will make 
sense as English phrases. This would al­
most seem to take the place of program 
comments, but even so, Pascal provides 
one of the most flexible commenting 
schemes possible. Comments may appear 
anywhere in a Pascal program except in 
the middle of words! 

STEPWISE REFINEMENT: 
In writing a Pascal program it becomes 

very easy to use top-down programming 
style. This is mainly due to the flexibility 
and ease of writing procedures and fun­
ctions. It is not unusual to see incredibly 
complex Pa.seal programs, several htm­
dred lines long, in which the main pro­
gram accounts for less than one hundred 
lines. Such a main program will usually 
cons.I.st of the overall program flow-logic 
with dozens of calls to well-named pro­
cedures and functions. 

Procedur es and functions correspond 
roughly to subroutines and functions in 
For tr an, but are actua lly part of the 
P ascal program . This means that pro­
cedur es and functions inherit all variable s 
defined in the m ain pr ogram, s imilar to 
subroutines in Ba.sic, but they can also in­
clude declarations of variables and con­
stants which are only Vl'J id themselves . 

it should also be noted that procedures 
and :functions a.r e fully recursive in Pas­
cal, that is they may in turn call them­
selves , 

Simply using the name of a procedure 
or function -wi ll invoke it; thus it becomes 
very easy to V¥Tite code with pr ocedure 
names and worry a.bout all of the mes s y 
details at a later date . 111is is , of course, 
the basis of top-down programming. 

EXPLICIT DEFINITIONS: 
Another level of stepwise r efinement 

is careful pre-plruming of a program. 
Usually, Pascal programs are most eas­
ily planned-out by using a form of loose, 
English-like pidgin Algol. 

One thing should be noted here: Pascal 
is probably best classified as a descen­
dru1t of Algol. People who know Algol sel­
dom have any difficulty in learning Pa.seal. 
In fa.ct, Algol-60 is generally considered 
to be a subset of Pascal. 

Careful pre-planning is encouraged by 
the fact that Pascal has very rigid rules 
requiring virtually all da.ta. structures to 
be defined at the start of a program. Un­
like many languages, you can't just throw 
in an extra variable, in the code, when 
you discover that you need it. Because 
Pa.seal also requires such things to be 
defined, careless pre-plruming often be­
comes quite self-evident just by looking 
at the declarations. This feature is some­
thing which Basic programmers typically 
have a hard time getting used to, but it 
often makes assembly language hackers 
feel right at home. 

Probably the greatest single new idea 
to come out of Pa.seal is the user­
definea.ble data type. This construct, which 
appears in the declarations, permits the 
programmer to specify new types of data 
beyond the standard Real, Integer, Char­
acter and Boolean types . Data types of 
arbitrary complexity may be constructed; 
i.n fact adding complex numbers to a Pas­
cal program is generally considered to 
be a trivial case ! 

Users may define data types as outra­
geously complex as say, a five dimen­
s ional arr ay of records of arrays , sca­
lars, r ecords with variant parts , pointe r s 
and complex number s . The programming 
power added by this concept is almost 
difficult to im agine ; it provides us with 
the ability to cr eate structured data as 
well as structur ed processes. 

SINGLE-ENTRY /SINGLE-EXIT 
CONTROL STRUCTURES: 

One of the requisites for being able to 
show that a program will work correctly 
is that it must be possible to trace out all 
of the possible execution paths, through 
the program, for given sets of inputs. 
Usually, this is done by first breaking the 
progran1 down into small units, showing 
that ea.ch unit works correctly, and then 
showing that combinations of units work 
correctly ru1d so on. 

This all smmds very simple, except 
for one item - the GOTO statement throws 
a monkey wrench into the whole thing. 
The problem is that it doesn't take too 
many GOTOs combined with conditional 
branches, before an almost infinite num­
ber of possible execution paths appear in 
a progrrun. How can you prove that a 
block of code will perform •:Jorrectly, 
when you can't even be sure where it will 
be entered from, or where control will 
exit to, once it has completed? 

As an example, consider a section of a 
Basic program, possibly a scoring routine 
for a game, which is invoked by GOTOs 
from 20 different locations. In addition, 
these GOTO statements jump into the 
scoring routine code at six different 
points, depending on flags set by previous 
passes through the routine, and upon other 
outside events. Depending on the data 
present and the entry point, the routine 
may branch to several places in itself, 
loop in two places, or fall straight through. 
Also, when it completes, depending on 
outside conditions and also upon previous 
passes through it, the routine may branch 
to any one of eight other program sec­
tions. stop and think a.bout how much ef­
fort it would take to trace all possible 
paths through such a mess! This code 
mlght be clever and efficient, but is it 
worth all of the headaches which it will 
cause in the long run? 

Not only is such convoluted logic dif­
ficult to follow and understand, but it is 
also a major chore to get all of the bugs 
out of it; and you cru1 never be sure that 
all of them ARE out. As if that isn't enough, 
just try to ma.lrn a major chru1ge to such 
a pl.ece of code - it would probably be 
ea.sier to discard the whole thing, rather 
than try to patch i t. 

Now that we've r aked the GOTO s tate­
ment over the coals, what is there which 
will take its place? The answer is: single­
entry / single- exit control structur es. 
Flow of c ontrol , in a. program, always 
enter s the top of such a s tructur e, and 
will only exit out through the bottom. This 
means that, if the program unit inside of 
the structure is correct , we can t race an 
effective straight line through the whole 
thing. A familiar example of a s ingle­
entry I s ingle-exit structure is the FOR­
NE XT loop in Ba.sic, but without any 
GOTOs which enter or leave the middle: 
F low will enter at the top, looping will 
occur, but eventually flow \'fill continue 
through the bottom of the FOR-NEXT. 

As it turns out, there are only three 
structures required to replace .the GOTO 
statement. They a.re: 

-The WHILE statement, 
-The IF-THEN statement, 
-And Compound statements. 

In Pascal, anyplace a statement can go, 
may be placed a Compound statement. 
Compound statements consist of the word 
BEGIN, followed by any group of state­
ments (which may include more Compound 
statements), followed by the word END. 

Pascal also includes WHILE and IF­
THEN statements, plus several other 
singe - entry I single - exit structures 
which add to the convenience of GOT~ 
less programming. 

The following is a list of all of the 
structured statements in Pascal, along 
with flowchart segments to indicate how 
they function: 

This is, of course, t.he well-known 
IF-THEN statement: 

TRUE AN Y 
STATEMENT 

Note that the as s ignment s tatement is 
very free-form : Spaces m ay be inserted 
as needed, the as s ignment may continue 
onto mor e than one line , e tc . The onlv 
restr iction is that words can not be broke;1 
in the m iddle. 

A convenient form of the IF-THEN state­
ment is the IF-THEN-ELSE: 

The WHILE statement has the form: 

This next one is the REPEAT-UNTIL 
statement. There is an important dif­
ference between this -and the WHILE 
statement which should be noticed: 

If the condition is false, when a 
WHILE statement is entered, no 
action takes place - control skips 
around the ANY STATEMENT part. 

In a REPEAT-UNTIL however, the ANY 
STATEMENT pa.rt always gets executed 
at lea.st once, regardless of the con­
ditional part. 

The FOR-UPTO statement is very s in1ilar 
to the FOR-NEXT statement in Basic , 
except that it is restricted to an incr e­
ment of one (1) . This is intended to add 
to the r eliability of the construct, ,since 
m ost digital computers can not exactly 
r epresent fract ional number s. If other 
incr ements wer e permitted, it might be 
possible for the increment to not exactly 
m a.tch the terminator when it reached the 
des ir ed value , &1.d s o perhaps the loop 
would continue for an extra pass. This is 
a very frust rating problem, because it is 
usually highly ma.chine dependent, and 'Nill 
typ ically only show up in a very few 
specific i.nst al1ces. All of this is elim­
inated by Pascal' s res trict ions of the 
incr ement value to one (1). One positive 
side effect which results from this is 
that the speed of the s tatement is often 
greatly increased, since many machines 
have single instructions for incrementing 
and testing memory locations , or r eg­
isters. 

The FOR-DOWNTO statement is iden­
tical to this, except that the index is 
decremented by one, each time through 
the loop: 

INDEX:: 
INITIAL VALUE 

ANY 
STATEMENT 

TRUE 

INDEX::INDEX+1 

This la.st one is the CASE statement, 
which is somewhat like the ON- GOTO 
statement in Ba.sic: 

L ABEL LIST 1 

LABEL LIS T 

[~ ~~~ E_ll_~, 
,__ _ _..,. AN Y ' 

t2_1ATEM~ 

L ABEL LI ST 
T . ANY 

n ~STA T EMENT 



PAGE 6 TRS-80COMPUTING1:4 

All of this should not be taken to imply 
that Pascal is a GOTO-less language 
(People's Pascal is GOTO-less-Ed); it 
does have labels and GOTO's. The im­
portant point is that the experienced 
Pascal programmer will almost never 
use them, since they are never needed 
and only rarely of any value. 

PART 'IWO: 
SUMMARY OF PASCAL 
STATEMENTS, WITH EXAMPLES 

CHARACTER SET: 
The standard Pascal character set in­

cludes: Letters A-Z (and depending on 
the implementation, a-z), numbers o...;.9, 
special characters + - * I = Y i ( ) [ I 
• , , • 1 t and the space or blank char­
acter. 

NAMES: 
Names in Pascal consist of letters and/ 

or digits, and may be any number of 
characters in length. The first character 
must be a letter, and the first eight 
characters must be different than the 
first eight characters of any other name. 
Examples: · 
. ENDOFDATA TYPES AVERAGE 

TOTAL SCORES PAYRATE 
CARDCOUNT 

NUMBERS: 
Numbers in Pascal are either real -or 

integer. They may be signed or unsigned. 
Integers are a string of digits. Ex­

amples: 
+7 43 365 -18 8388607 4092 0 

Reals have three forms: 
digits • digits 
digits • digits E-scale factor 
digits E-scale factor 

The E notation indicates multiplication 
by 10 raised to the scale factor power. 
Examples: 

3.1415 6;02E23 9.llE-31 -1E9 
Note that the scale factor is always an 
integer. 

·coMMENTS: 
The compiler will ignore, as being 

comments, anything typed between the 
symbols "*"· Example: *comment*. On 
systems which have them, curly brackets 

. f. i are used instead. 

OPERATIONS: 
Integer operations: 

* Multiplication 
DIV Division (integer part only, re­

mainder discarded) 
+ Addition 
- Subtraction 

MOD Modulo (A MOD B = 
A-((A DIV B)*B)) 

Real operators: 
* Multiplication 
I Division 
+Addition 
- Subtraction 

Boolean operations: 
AND Logical AND 

OR Logical OR 
NOT Logical NOT 
Relational operations (give Boolean re-

sults: · · 
f. Less than 
i Greater than 
=Equal to 

f.= Less-than or equal-to 
A= Greater-than or equal-to 
M Not-equal to 
IN Used with tata type . SET, to de­

termine membership of an ele­
ment 

Examples: 
A*B 
XDIVY 

A times B 

TOP ,.(=BOT­
TOM 

ABOVE AND 
BEYOND 

X divided by Y 
Numerlcal comparison 

True if both (ABOVE and 
BEYOND) are true Boo­
lean variables 

FUNCTIONS: 
ABS 
SQR 
TRUNC 
ROUND 
succ 

PRED 

SIN 
cos 
ARCTAN 
LN 
EXP 
SQRT 
ORD 

CHAR 

ODD 

EOLN 

EOF 

-Absolute value 
-Square 
-Truncate to integer part 
- Rounded-up integer form 
-Next highest (integer or 

character) 
-Next lowest (integer or 

character) 
-Trigonometric sine 
-Trigonometric cosine 
-Trigonometric arctangent 
-Natural (Base e) logarithm 
-e raised to the power 
-Square root 
- Numeric value associated with 
the character 

-Character associated with 
the numeric value 

-True if the integer argument 
is odd 

-True when end-of-line is 
reached 

-True when end-of-file is 
reached 

RESULT TYPE FOR ARGUMENT OF 
TYPE: 

Name 
ABS 
SQR 
TRUNC 
ROUND 
succ 
PRED 
SIN 
cos 
ARC TAN 
LN 

Integer 
Integer 
Integer 

Integer 
Integer 
Real 
Real 
Real 
Real 
Real 
Reel 

Character 
Boolean 

Real 
Real 
Real 
Integer 
Integer 

Reel 
Real 
Real 
Real 
Real 
Real 

Character 

Character 
Character 

Integer 

EXP 
SQRT 
ORD 
CHR 
ODD 
EDLN 

EOF 

Argument is always a file name, 
reeult is always boolean. 
Argument is always e file name, 
result is always boolean. 

STATEMENTS: 

PROGRAM HANDLING: 
PROGRAM programname (filename, 

filename, ••• ); 
Example: PROGRAM TESTSCORES (IN­
PUT, OUTPUT); 

CONSTANT DEFINITION: 
CONST constname = value; constname 

=value; ••• 
Example: 
CONST ENDOFDATA =-1.0; PI=3.141592; 

MAXSCORE = 100; MINSCORE 
= O; 

· Note that the constant definitions can 
continue onto more than one card, but the 
CONST is only typed once. 

There are some nredefined values which 
do not need to be· declared as constants 
in Pascal programs. these are: 

. TRUE Boolean true value 
FALSE Boolean false value 
MAXINT Largest integer the computer 

can work with 
NIL Nuil pointer 

VARIABLE DEFINITION: 
VAR varname, varname, .•• : type; 

varname, varname, •.• : type; ... 
Example: 
VAR SCORE,MAX,MIN,TOTAL: INTE-

GER; RADIUS, DIAMETER, CIR-
CUMFERENCE: REAL; 
FOUND, DONE, FLAG, OK: BOO­

LEAN; 
Note that the declarations may con­

tinue on several times, but only one VAR 
is required • 

PROCEDURE DEFINITION: 
meters; VAR variable parameters); 

body of procedure 
Example: . . 
PROCEDURE INCREMENTBY (INCREM-
ENT:REAL; - - --- -

VAR VARIABLETOBEINCREMENTED: 
REAL); 

BEGIN 
V ARIABLETOBEINCREMENTED := 

VARIABLETOBEINCREMENTED + 
INCREMENT 

END; 

FUNCTION DEFINITION: 
FUNCTION functname (value paramet­

ers): result-type; 
body of function 

Example: 
FUNCTION RADIUS (CIRCUMFERENCE: 

REAL): , 
REAL; 

CONST TWOPI = 6.2831; 
BEGIN 

RADIUS: =CIRCUMFERENCE/ TWOPI 
END; 

ASSIGNMENT STATEMENTS: 
varname := expression 

Examples: 
WEEKSPAY:=PAYRATE*HOURSWORK­
. ED; 
VOLTS: =AMPS.*OHMS; 
CONEVOLUME: = (PI*SQR(RADIUS)* 

HEIGHT) . 
/3.0; 

ARRAYLOCATION :=ARRAYLOCATION 
+ 1; 

Note that the assignment statement is 
very free-form: Spaces may be inserted 
as needed, the assignment may continue 
onto more than one line, etc. The only 
restriction is that words can not be 
broken in the middle. 

THE COMPOND STATEMENT 
In Pascal, any place where a statement 

can be used, a compound statement may 
also be used. A compound statement is 
formed by the word BEGIN, a group of 
any statements, followed bythewordEND. 
Examples: 
BEGIN 

SCORESUM: =SCORESUM+SCORE; 
SCORECOUNT:=SCORECOUNT+l 

END 
BEGIN 
X:~ (Y+ Z)/100; 
BEGIN 

T: = (Q/75) + 15; 
F:=N-18 

END 
END 

PLACEMENT OF SEMICOLONS: 
The simplest rule for the placement of 

semicolons, in a Pascal program, is: 
Place a semicolon between any two 
Pascal statements. 

Note: BEGIN and END are not Pascal 
statements. They are simply delimiters. 
A compound statement is a statement, and 
must be separated from other statements. 
Also note one exception to the rule: 

The ELSE in the IF-THEN-ELSE 
takes the place of a semicolon in 
separating the two statements. 

CONDITIONAL STATEMENTS 
THE IF-THEN STATEMENT: 

IF expression THEN statement 
Example: 

IF MAXSCORE ,{ SCORE THEN 
MAXSCORE : =SCORE 

THE IF-THEN-ELSE STATEMENT: 
If expression THEN statement ELSE 

statement 
Example: 
IF TIME ,.( 0 THEN TIME:= 0 ELSE 

TIME:=l 

THE CASE STATEMENT: 
CASE expression OF 

case-label-list: statement; 
case-label-list: statement; 
etc. 

END 
Example: (* Determine command group 
from a command number *): 
CASE COMMANDNUMBER OF 

!J., 1, 3 GROUP: =1; 
2,4 GROUP:=2; 

5; 9, 11 GROUP: =3 ; 
6, 7, 8 GROUP: = 4; 

10 GROUP:,;,5 
END 

REPETITIVE STATEMENTS: 
. THE WHILE-DO STATEMENT: 

WHILE expression DO statement 
Example: 
WHILE NOT EOF (INPUT) DO 
BEGIN 

READ(SCORE); 
SCORESUM: =SCORESUM+SCORE; 
SCORECOUNT: = SCORECOUNT + 1 

END 

THE REPEAT-UNTIL STATEMENT: 
REPEAT group-of-statements UNTIL 

expression 
Example: 
REPEAT 

X:=X-1; 
Y:=Y+l 

UNTIL (X A 0) OR (YA 0) 

THE FOR STATEMENT (two forms): _ 
FOR control-.variable : = initial-value 

TO final-value DO statement 
FOR control-variable : = initial-value 

DOWNTO final-value DO state.ment 
Examples: 
FOR INC EX : = 1 TO ARRA YTOP DO 

ARRAY[INDEX) : = 0 
FOR INDEX : = 100 DOWNTO 

ARRAYBOTTOM DO IFARRAY[INDEX] 
A 0 THEN ARRAY[ INDEX]:= 0 

TRANSFER OF CONTROL 
STATEMENTS: 

The conditional and repetitive state­
ments previously described are sufficient 
control structures to perform any re­
quired computation. 

Remember that although labels and 
GOTOs are provided in Pascal (not 
People's Pascal), they are unnecessary 
and will often only create confusion in 
program logic. 

Therefore it is recommended that they 
be avoided except in those rare extreme 
cases where they actually have some 
value. 

LABEL DEFINITION (no labels in 
people's pascal): . 

The filename must have been declared 
in the program heading. 

The difference between READ and 
READLN is that successive READ state­
ments will continue to input successive 
values from the same record, only going 
to a new record when all values on the 
current one have been exhausted. 

A READLN, on the other hand, will 
skip any additional values on the current 
record, and go to the next record to begin 
reading values. 
Example (two records): 

I o.o 1.0 2.0 I 
I 3.o 4.o s.o I 

READ(A,B); 
READ(C,D) 
The result of this would be A = O. 0, 
B=l.O, C=2.0, D=3.0, 

READLN (A, B); 
READLN(C,D) • 
Would result in A=O. 0, B=l. 0, C = 3. 0, 
D=4.0. 

OUTPUT PROCEDURES: 
WRITE (expression-list) 
WJ:tlTE LN (expression-list) 
WRITE (filename, expression-list) 
WRITELN(filename, expression-list) 

Examples: 
WRITE(A,B,C) 
WRITELN(X*Y/Z,MAX,SQRT(Q),'*****1) 

WRITE(NEwFILE,NAME,ADDRESS, 
PHONE,AMT+l.O) 

WRITELN(PLOTFILE,XCOORD, YCOORD, 
PENPOS,MARK) 
Successive WRITE statements cause 

the values to be . written, all as one 
record. Each time a WRITELN is exe­
cuted, however, a new record is output . 
Examples: 
WRITE (1A','B'); 
WRITE(1C1, 1D1) 

Would output ABCD. 
WRITELN('A', 1B1); 

WRITELN('C1 , 1D1) 

Would output AB 
CD. 

Formatting numeric output is very easy 
in Pascal. Each expression in a WRITE 
or WRITELN can actually have one of the 
following three forms: 

expression 
expression:width-expressfon 
expression:width-expression:fraction-

width-expression 
The expression gives the value which is 

to be output. The width-expression gives 
the minimum number of character posit­
ions to be included in the output. If the 
expression yalue doesn't require all of the 
positions, the extras will be filled with 
blanks. If the number is too big to fit in 
the area, the area size is expanded to 
accommodate the number. 

The fraction-width-expression speci­
fies how many digits will be printed to the 
right of the decimal point for a real 
number. 
Examples: 
A=lOO, B=l.5, C=137875.3217, 

D=l28.34152 ' 
WRITE(A:5,B:5,C:5,D;9:3) would output 

100 1.5137875.3217 128.341 
WRITE (A:3,B:5:2,C:9:1) would output 

100 1.50 137875.3 

CARRIAGE CONTROL: 
Although this is machine and imple­

mentation dependent, most Pascal s ystems 
will destroy the first character of each 
record output to a printing device. Thus, 
an extra character must be provided at 
the start of each output line, usually a 
space. 

In reality, fuis character acts as a 
carriage control command, which is either 
directly implemented in the hardware of 
the printer, or which is simulated by the 
monitor or operating system, in software. 

The following are the standard carriage 
. control command characters used in Pas­... oal: The label definition is placed after the 

CONST declarations in the program. ··"-i ~ . 

LABEL integer, integer, •.• ; 
·Example: ?:~~b~r norr:~i~~le spaceing 

. }&;'*~> double space, skip 1 line LABEL 10, 20, 25, 100, 9999; 

GOTO STATEMENT (not available in 
people's pascal): 

GOTO label 
Example: 
GOTO 9999 

INPUT AND OUTPUT IN PASCAL: . 
Pascal I/ O s1;atements are riot really 

statements, but are actually calls to pre­
defined procedures. Nonetheless, they are 
often referred to as statements. 

INPUT PROCEDURES: 
READ(variable-list) 
READLN(variable-list) 
READ(filename, variable-list) 
READLN(filename, variable-list) 

Examples: 
READ (X, Y, Z, MAXVAL) 
READLN (HIGHSCORE, LOWSCORE, 

AVGSCORE) 
READ (WEATHERFILE± TEMP, 

HUMIDITY, PRESSURE) 
READ (CUSTOMERFILE, NAME, 

NUMBER, BALANCE) 

t K > page eject 
~~ding upon how the carriage con­

trol /l.S.<implemented, using other char­
acters. may have different effects, which 
may or may not be desireable. 

DATA TYPES: 
All data type definitions are placed 

between the CONST and VAR declarations 
at the start of the program. 

SCALAR TYPES: 
TYPE typename = (identifier, 

identifier, ••• ); 
Example: 
TYPE MONTH = (JAN,FEB,MAR,APR, 

MAY,JUN,JUL,AUG,SEP,OCT,NOV, 
DEC); 

SUBRANGE TYPES: 
TYPE typename = constant .•. constant; 
VAR varname-list : constant . .• con­

stant; 
Examples: 

CONTINUED ON PAGE (12) 



PEOPLE'S PASCAL I 1.1:1..:i-ou vVlVl.PUTiNU 1:'! !-'Ali~ '{ 

TRS-80 PEOPLE'S PASCAL 
pipe dream software, berwick australia 

COPYRIGHT APRIL 1979 
ALL RIGHTS RESERVED 

SY STEM DOCUMENTATION 
1. INTRODUCTION: 

The TRS-80 People's Pascal system is 
a program development system for Tiny 
Pascal, a subset of the Pascal program­
ming language introduced by Niklaus Wirth 
of the Engineering University at Zurich. 

Tiny Pascal was defined in Byte mag­
azine - "A 'Tiny' Pascal Compiler", by­
Kin-Man Chung and Herbert Yuen, in 
three parts, September, October and Nov­
ember 

The Pascal language is defined in 
"Pascal: User Manual and Report" by 
Kathleen Jensen and Niklaus Wirth (Sp­
ringer-Verlag 1974). A good introductory 
book on Pascal is "Microcomputer Prob­
lem Solving Using Pascal" by Kenneth L. 
Bowles (Springer-Verlag 1977). 

The following programs are supplied with 
People's Pascal: 

1.1 TEXT EDITOR: 
The editor is line-oriented. Intra-line 

editing is not provided. Text files may 
be manipulated in the following ways: 
create, edit, list, print, merge, copy, 
read from and write to cassette. 

The editor uses a 3,000-character (3K) 
text buffer and 240-character blocked 
records on cassette files to achieve its 
results. Source files of indefinite length 
may be manipulated, but short files are 
recommended for convenience and modu­
larity. Editor commands are: insert, de­
lete , replace, lis t, print, read and merge, 
write, re-number, compile, and free . 
Refer to the editor operating instructions 
and program documentatioi: for details. 

1. 2 COMPILER: 
Included in the same program as the 

editor, to save time-consuming swapping 
between programs during program de­
velopment, the People's Pascal compiler 
translates the source program in the text 
buffer and/ or included from one or more 
source program text files into a Pcode 
object program on cassette. 

The compiler accepts the following 
Pascal subset: AND, ARRAY, BEGIN, 
CASE, CONST, DIV, DO, DOWNTO, ELSE, 
END, FOR, FUNC, IF, INTEGER, MOD, 
NOT, OF, OR, PROC, READ, REPEAT, 
SHL, SHR, THEN, . TO, UNTIL, VAR, 
WRITE. , 

Note that character arrays, records, 
files, reals, programmer-defined types 
pointers and GOTO are omitted from 
People 1 s Pascal. 

In addition, extensions are provided to 
read from and ·write• to absolute memory 
addresses, and to allow the calling of 
as sembly language subroutines at absol­
ute memory addresses, together with 
limited numeric I/ 0 formatting and the 
definition of hex constants. 

A "$INCL" include-source-file feature 
is provided to allow modular program 
development. 

The compiler is a one-pass compiler 
using recursive descent. Refer to language 
definition, compiler operation and compil­
program documentation for details. 

1. 3 THE INTERPRETER: 
The interpreter reads a P-code program 

object file produced by the compiler into 
memory and interprets the program, per­
for ming the actions required of the imag­
inary P-machine, which has P-code as 
its instruction set. 

The interi)ieter has the following de­
bugging routines: 

SET BREAKPOINT(s), CLEAR ALL 
BREAKPOINTS, EXAMINE PROGRAM, 
GO, EXAMINE STACK CONTENT, 
EXAMINE NEXT PROGRAM LOCATION, 
QUIT, RUN, SINGLE STEP, TRACE, EX­
AMINE PREVIOUS PROGRAM LO­
CATION, DISPLAY P-MACHINE REG­
ISTERS, DISPLAY BREAKPOINTS. 

The current version of the interpreter 
written in Basic is slow, with a double 
level of interpretation. 

P-code object programs of up to 8.6K 
bytes may be interpreted. Refer to in- ' 
terpreter operating instructions and in­
terpreter program documentation for de­
tails. 

1. 4 TRANSLATOR: 
The translator reads in a P-code ob­

ject file produced by the compiler and 
tr anslates P-code instructions into fast 
Z- 80 code (machine language instructions) 
us ing the Z-80 stack pointer for the 
People's Pascal stack. 

Translated programs run about five 
times faster than Leve.I-II Basic. Graphics 
instructions run about eight tiµles faster . 

The translator also has the option to 
optimise for minimum memory useage, 
reducing program size to half at the cost 
of some speed reduction. Refer to trans­
lator operating instructions and program 
documentation for details. 

1. 5 PEOPLE'S PASCAL 
SOURCE LIBRARY: 

The People's Pascal library uses the 
"$INCL" compiler option to allow an ex­
tendable set of standard routines to be . 
incorporated into user programs. The 
following routines are provided: 
SET(ON/OFF,X,Y):; set/reset graphics 

(=SET(X, Y)) 
RND(SEED):; pseudo random number gen­

eration 
AT(cursorposition): cursor control 

(=PRINTE) 
User-written routines may be added to 
the People's Pascal library. other rou­
tines also may be provided, such as UCSD 
"turtle" graphics procedures MOVK(dis­
tance), TURN(angle), MOVETO(X, Y), 
PENCOLOR(white/black/none). 

1. 6 RUN-TIME SYSTEM: 
This program is writeen in Z-80 as­

sembly language and provides subroutines 
called by translated People's Pascal pro­
grams for multiply, divide, set, I/O, etc. 
It occupies about 1 K byte. Both source··and 
object programs are supplied. Refer to 
run-time-system program documentation 
for details . 

2. PEOPLE'S PASCAL LANGUAGE: 
It is not the aim of this document to 

teach the Pascal programming language. 
TRS-80 People's Pascal includes the 

full set of program structuring state­
ments, such as IF, THEN, ELSE, BEGIN, 
END, WHILE, REPEAT, FOR, CASE, 
PROC, FUNC, but includes integer and 
array of integer data types only (16 bit). 
Refer to the language reference docu­
mentation for details. 

3. MEMORY MAPS: 

3. 1 EDITOR/ COMPILER (TPEC): 

------'---- --- - -
COMPILER EDITOR 

BW 
AO 
SR 
IK 
c 

TEXT 
BASIC BUFFER 

STACK 
AREA 

-------- --- - -
16384 29700 32767 

3. 2 INTERPRETER (PPlliT): 

BA.WO INTERPRETER BASIC P-CODE PROGRAM 
SR STACK TO BE INTERPRETED 

IK AREA ---1 
c 

16384 24000 32767 

3. 3 TRANSLATER (PPTRANS): 

P-CODE PROGRAM TO BE 

1311 T~ANSLATORBASIC TRANSLATED--i> 

AO C 
SR STACK 
IK AREA 

c 

GENERATED ·Z -80 CODE 
PROGRAM OVERLAYS 
P-CODE --+ 

16384 23000 24000 

3. 4 PEOPLE'S PASCAL 
TRANSLATED PROGRAM 
AT RUN TIME: 

BW 
T RA.'ISLATED 

32767 

AO T- RUN TINY 
SR BUGTI- PASCAL 
JK OP- ME STACK 
C TI- SYS -

TINY PASCAL PROGRAM 
(IN Z - 80 MAC HINE CODE) 

. ON-TEM · ~ 
AL 

- - - --- ----------
I I 
1 1 1 20196 
6 7 
3 2 
8 8 
4 0 

•-+ 
23000 32767 
NOTE: THIS BOUNDARY 
CAN BE MOVED UP FOR 
A"LARGER STACK -

4.' PEOPLE'S PASCAL STACK: 
The Pascal pseudo machine is stack­

oriented. For a complete understanding of 
the system, it is first necessary to under­
stand the P-machine and its stack. The 
P-machine has two regis.ters, (T) and (B). 
(T) is the stack pointer, . which always 
points to the top element on the stack. 
(B) is the base register, which points to 
(i.e., holds the address of) a stack lo­
cation which is the stack base for the 
"block" (i.e. program, procedure, or fun­
ction) that is . currently executing. The 
base is used as a reference point for var­
iable l].ddresses. 

When a block is entered (i.e., when a 
procedure is called) space for the var- · 
iables it declares is allocated on the 
stack in a new "stack frame", which uses 
the space just above the last-used stack 
locations. 

All variables declared within a block (in 
a stack frame) are identified within the 
P-code by an offset from the base of a 
stack frame, rather than by .an absolute 
address as in some other systems. Var­
iables which were declared in the block 
which is currently executing can be ob­
tained by adding their offset to the contents 
of the base register. This forms the ab­
solute address of the variable. On the 
other hand, variables which were declared· 
in some other block must have their off- · 
sets added to the base of the stack frame of 
that outer block in order to be referenced 
by their absolute address. 

The base of the outer block can be ob­
tained because at the base of each stack 
frame is a word which contains the ab­

. solute address of the previously-entered 
(outer) stack frame. Thus stack frame 
bases are linked together in a linked list 
which descends down the stack to the base 
of the stack frame of the outermost block 
(mainline) of the program. 

In fact there are two lists: A "static" 
list, which links stack frames for obtaining 
variable addresses. This list r eflects the 
lexical structure of the program, i.e., the 
static nesting of procedure declarations. 
The second list links stack frames in ex­
ecutation sequence, reflecting the sequen-

' ce of active procedure calls, at program 
run time. The second (dynamic) list is 
used to regain the base of the calling 
procedure on exit from the called pro­
cedure. 

5.1 DIAGRAM OF PEOPLE'S 

PASCAL ST ACK FRAME: 

VARIABLE N 

VARIABLE N-1 

VARIABLE 1 

(TOP OF STACK 
(LAST VARIABLE 
DECLARED IN THIS 
P ROCESS OR FUNCTION) 

(FIRST VAR DECLARED 
IN THIS PROC OR FUNC) 

RETURN ADDRESS --t TO NEXT INSTRUCTION 
IN CALLING P ROC 

DYNAMIC LINK ~ TO BASE OF CALLING 
P ROC 

P ARAMETERN 

PARAMETER N- 1 

P ARAMETER 1 

FUNCTION 
RETURN VALUE 

~ TO BASE OF PROC OR 
PROG WITHIN WHIC!f 
THIS PROC WAS DECLARED 

(NOT PRESENT FOR 
PROCEDURES) 

(LAST VAR OF PREVIOUS 
PROC) 

5. THE P-CODES: 
P-codes are the machine language of 

the imaginary P-machine. 
P-codes occupy four bytes each. The 

first byte is the operation code (op-code). 
There are nine basic P-codeinstructions, 
each with a different op-code. 

The second byte of the P-code instruc­
tion contains either zero or a lexical 
level offset, or a condition code for the 
conditional jump instruction. 

The last two bytes taken as a 16-bit 
integer form an operand which is a lit­
eral value, or a variable offset from a 
base in the stack, or a P-code instruc­
tion location, or an operation number, or 
a special routine number, depending on 
the op-code. 

5.1 P-CODE DETAILS: 
p-code hex description 

op-code 
LIT 0,N 00 

OPR0,N 

LOD L,N 

LODX L,N 12 

STO L,N 

load literal value onto . 
stack 
arithmetic or logical 
operation on top of stack 
load value of variable 
at level offset L, base 
offset N in stack onto 
top of stack . 
load indexed (array) 
variable as above 
store value on top of 
stack into variable lo­
cation at level offset 
L, base offset N in 
stack 

STOX L,N 13 store indexed variable 
as above 

CRLL,N 04 call PROC or FUNC at 
at P-code location N 
declared at level off-
set L 

INT 0,N 05 increment stack pointer 
(T) by N (may be neg-
ative) 

JMP 0,N 06 jump to P-code loca-
tion N 

JPC C,N 07 jump if C=value on top 
of stack to P-code . lo-
cation N (C can = 0or1) 

CSP 0,N 08 call standardprocedure 
number N 

LANGUAGE 
DESCRIPTION 
1. INTRODUCTION: 

People's Pascal is a Pascal subset 
containing all the program structuring 
constructs except GOTO, but without many 
of the data structuring facilities. 

2. PASCAL FEATURES 
NOT PRESENT 
IN PEOPLE'S PASCAL: 

2. 1 DATA TYPES: 
Integer and array of integer (16-bit) 

data types are the only data types pro­
vided (range -32767 to +32767). 

Integer arrays may be of/ single-dimen­
s ion only. No Boolean, r eal or CHAR 
data types. No records, files, or pointer 
types. No programmer-defined types. No 
sets. 

However, note that integers and integer 
arrays can . be used to store character 
data, and that single-character literals 
are accepted, and that a write character 
string fa_,cility is provided. e.g., ·.vrite 
('HELLO THERE!'); note also that logical 
operations are allowed on integers, e .g. 
IF A THEN .. ; WHILE 1 DO .. ; (loops for­
ever). 

2. 2 PROGRAM STRUCTURE: 
No GOTO. No statement labels. struc­

tured programming must be used exclus­
ively - this can lead to more easily under­
stood programs. For any function that 
uses GOTOs, there is anot}).er function 
which performs the s ame operation with­
out, gotos using only sequential, condi­
tional (IF, CASE) and iterative (WHILE, 
REPEAT, FOR) structures. 

2. 3 PARAMETERS 
PASSED BY VALUE: 

People's Pascal only provides for pro­
cedure and function parameters passed 
by value (i.e. there can be no output 
parameters from a procedure). 

Note that a function can return a value 
and that procedures can alter global var­
iables (variables declared outside them­
selves) as alternatives. The second al­
ternative is best avoided ' where possible, 
to minimize the dependence of the pro- , 
cedure on its environment, and make the 
program less complex. 

2. 4 WRITELN: 
WRITELN is not provided. Use WRITE 

instead. 

3. ADDITIONAL FEATURES 
OF PEOPLE'S PASCAL: 

3.1 ACCESS TO MEMORY: 
A special "built in" array called "MEM'' 

is provided. This array does not need to 
be declared. 

The MEM .array is mapped onto ab- , 
solute memory. 

The contents of MEM(X) consists of the 
byte of memory at absolute address X. 
E.g. A:=MEM(X); or MEM(30):=0; 

This facility is equivalent to Basic 
PEEK, POKE. 

3. 2 ACCESS TO ROUTINES 
IN ASSEMBLY LANGUAGE: 

A "CALL" facility is p~.ovided to allow 
the invocation of assembly language (Z-80 
code) routines. E.g., CALL(32650) or 
CALL(RTN). 

All necessary registers are saved by 
the People's Pascal run-time system be­
fore the user's routine is entered, and 
restored on return. 

If the routine is called from within a 
procedure, then the procedure parameters 
can be accessed on the stack by the 
called routine. 

3. 3 FORMAT CONTROL 
ON READ & WRITE: 

Without format control, when an integer 
is written, the result will be that the 
character whose ASCII value is that of the 
integer will be output. · I.e., WRITE(65) 
will cause the character "A" to be writ­
te'n to the display. WRITE(13) will cause 
a carriage return. WRITE (23) will cause 



PAGE 8 TRS-80 COMPUTING 1:4 

wide characters. WIUTE (28) will home the 
cursor. WRITE(31) will clear the screen 
from the current cursorpositiononwards. 
WRITE (28,31) will clear the whole screen. 
Refer to Level-II Basic Reference Man­
ual, pages c/1 and c/2. Note that all 
special control character values can be 

' declared as constants using "CONST". 
For purposes of standardization, the fol­
lowing names are recommended: · 

BS = 8 (backspace and erase) 
LF = 10 (linefeed/ carriage return) 
FF =12 (top of form-form feed) 
CR =13 (linefeed/carriage return) 
CON = 14 (cursor on) 
COFF = 15 (cursor off) 

The above process of "dummy" dec­
larations currently only applies to the 
syntax (gramatical) error detection pro­
cess. However, if lower-level .modules 
are compiled and tested first, then as 
development proceeds, these lower level 
modules are always available for testing 
the next level. 

The "$INCL" feature should be used in 
conjunction with the separate procedure/ 
function concept. · 

A complete procedure or set of pro­
cedures can be put into its own file, and 
"$1NCL"uded into the program. 

Note that all procedures must be de­
clared before they are referenced (used). 
This is a one-pass compiler. 

WIDE = 23 (convert to 32 chars/line 4• 2 INITIALIZATION 
-wide characters) 

CBACK = 24 (backspace cursor) OF VARIABLES; 
CFWD = 25 (advance cursor) People's Pascal variables arenotclear-
CDOWN = 26 (move cursor down) ed when they are allocated on the stack. 
CUP = 27 (move cursor up) Thus their initial value is unpredict-
HOME = 28 (home cursor - move to able (will be whatever happend to be in 

top LH corner of screen) that stack location), 
BLINE = 29 (move cursor to beginning Therefore it is important to explicitly 

of line) initialize variables (e.g., X: = 0;). 

ERASE = 30 (erase to end of line) 4. 3 ARITHMETIC 
CLEAR = 31 (clear to end of screen) . AND ST ACK OVERFLOW; 

Similarly, a READ will cause the integer No run-time checking for arithmetic 
being read to be assigned the ASCII value occurs, so an estimate of stack-space 
of the input character. requirement should be made and suffic-

Read and write formatting are provided ient stack space allocated. 
to override this facility. Arithmetic overflow may be checked 

A WRITE (X) will cause a number to for in the interpreter, 
appear on the screen equivalent to the 5• THE PEOPLE'S PASCAL 
value of X. READ (A) will cause the in-
put digits to be converted to a 16-bit LIBRARY: 
integer and stored in A. The •:#" is the The ·following routines are available: 
numeric format indication character. I.e., SE T(ONOFF ,X, Y); sets the graphic point at 
WRITE (65#) will cause the characters" 6" location X, Y. If ONO FF 

arithmetic or logical expression de-
limiter 

) array index closing delimiter 
* multiplication operator 
*) comment closing delimiter 

variable declaration component 
:= assignment operator 

equal-to operator 
- unary minus and binary subtraction 

operator 
+ addition operator -

statement separator 
< iess-than operator 
<= less-than-or-equal-to operator 

separator 
> greater-than operator 
> = greater-than-or-equal-to operator 
< > not-equal-to operator 
. end-of-program indicator 

8. PEOPLE'S PASCAL 
OPERATORS: 

+ 

* 

addition 
subtractionand unary minus 
multiplication 

DIV integer division 
MOD remainder after integer division 
SHL logical shift left (can be used 

multiplication of positive num­
bers by a power of two) 

SHR logical shift right (can be used 

NOT 
OR 
AND 

< 
<= 

>= 
<> 

for fast division of positive 
numbers by a power of two) 
logical-NOT unary operator 
logical OR 
logical AND 
equal-to 
less than 
less-than or equal 
greater - than 
greater than or equal 
not equal to 

and "5" to be written to the screen at the is set on. If ONO FF= 
current cursor location. O then point set off. r-------------------

RND(seed); retUrns -a pseuqo- 0 p E R A T I· N G 
3. 4 HEXADECIMAL CONSTANTS: 

Hexadecimal constants are provided 
for' and are specified by a leading per­
cent sign. Hex constants must contain 
four hex digits, e.g., %0¢3A, %FFFF. 

3. 5 ELSE ON CASE STATEMENTS: . 
An "else branch" is provided on the 

CASE statement, which will be taken if 
the CASE variable does not have a value 
which matches any of the other specified 
values. Be especially careful not to use 
spurious semicolons before this state­
ment, or before the end of the case state­
ment. Look at the syntax diagrams care­
fully. 

E.G.: CASE X OF 
1: WRITE('X EQUALS ONE',CR); 
2: Write('X EQUALS TWO',CR) 

(*NO';' HERE*) _____ _ 
ELSE WIUTE (1X OUT OF 

RANGE') (*OR HERE*) 
END (*CASE*) ; 

If you had an extra case element before 
the 'ELSE' (e.g., 3: .•. in the above ex­
ample), remember to put a semicolon on 
the end of the previous line (e.g., 2: ... 
in the above example). 

4. TIPS ON PROGRAMMING 
IN PEOPLE'S PASCAL: 

4. 1 MODULES: 
Break the program up into functional 

components. · 
Write these components as procedures 

or functions. If the procedure or function 
is of general use, then it can be placed 
in :·our own library, or into the People's 
Pascal libr~l'!_-. 

Try to ·connect the procedures to the 
rest of the program by parameters and 
function return values. 

Declare variables and constants only 
required within one procedure inside that 
procedure rather than outside it. 

Refer to "structured Design" (Larry 
Constantine andEd Yourdon, Yourdon Inc., 
1133 Avenue of the Americas, New York 
NY 10036) for a thorough discuss on of 
functional module design. 

A void declaring procedures within other 
procedures. 

People's Pascal optimization in the 
translator has been designed so that 
"well structured" (structured in the above 
manner) programs will execute fastest 
under "fast" optimization and occupy least 
memory when optimized with the "small" 
option. Thus there should be no conflict 
between good programming practice and 
efficiency. 

With a little ingunuity, procedures and 
functions can be compiled and tested 
separately, which can speed up the de­
velopment process. 

To compile a procedure or program 
mainline which uses other lower-level 
procedures, "dummy" procedure declar­
ations can be inserted before the main 
block. Dummy declarations consist of 
only the procedure name and formal par­
ameter declaration followed by a "begin 
end;" (e.g. FUNC RND(SEED); BEGIN 
END;) 

This will allow the main block to com­
pile without having to wiat for all its 
procedures to be compiled first. 

Of course, to test any procedure, fun­
ction or mainline, it will usually be nec­
essary to have compiled in all of the 
procedures that it uses. 

random number be-
tween 0 and32767. The 
seed should be set to 

:: ~:::r~:itvalue,for I N s T R u ( T I 0 N s 
AT(CURPOS); sets thecursortopo's- ------------------...J 

ition CURPOS on the ~ 

screen. 

6, PEOPLE'S PASCAL 
RESERVED WORDS: 

AND -logical-and operator 
ARRAY - array declaration 
BEGIN - compound statement opening 

delimiter 
CALL - invoke assembly-language 

routine 
CASE - multiple-statement select-

CONST 

DIV 

DO 

DOWN TO 
ELSE 

END 

FOR 

FUNC 

INTEGER 

MEM 
MOD 

NOT 
OF 
OR 
PROC 

READ 
REPEAT 
SHL 

SHR 

THEN 
TO 
UNTIL 

ion 
- constant declaration section 
keyword 

- integer' divide ·· arithmetic 
operator 

-while statement com­
ponent • 

- FOR statement component 
- IF and CASE statement al-
ternative branch 

- compound statement delim­
iter 

- iteritive (looping) statement 
component 

- function declaration key­
word 

- integer data type declaration 
keyword 

- memory array keyword 
- arithmetic operator giving 

division remainder 
- logical not operator 
- CASE statement component 
- logical-OR operator 
- procedure declaration key-
word 

- READ statement 
- iterative statement keyword 
- logical shift-bits-left op-
erator 

- logical shift-bits-right op-
erator 

- iF statement component 
- FOR statement component 
- REPEAT statement com-
ponent 

VAR - variable declaration section 
keyword 

WHILE : iterative statement keyword 
WRITE - WIUTE statement 

7. PEOPLE'S PASCAL 
SPECIAL SYMBOLS; 

NOTE 1. The square bracket characters 
used in Pascal for array index delimiters 
are not available on the TRS-80. The round 
bracket characters are used instead as in 
Level-II Basic, rather than the Pascal 
alternative"(." and".)". 

NOTE 2. The squiggly bracket characters 
used in Pascal for comment delimiters 
are not available on the TRS-80. The 
character combinations "(*" and "*)" are 
used instead. 

# read/write numeric format indicator 
(WIUTE(A#)) 

$ compiler directive line indicator 
($INCL FRED) 

% hex constant indicator (%A¢4F) 
' character string delimiter (e.g. 'A') 

arithmetic or logical expression de­
limiter 

array index opening delimiter (e.g. 
AR(3¢): = 1 ;) 

(* comment opening delimiter 

COMPILER 
1, INTRODUCTION: 

The People's Pascal compiler accepts 
language statements from an edit-buffer 
and I or cassette files, and translates 
these into P-code, which is output to an 
object file on cassette. 

The compiler also produces a screen 
display both of the source code lines and 
of the generated object code. · 

P-codes are machine-language instruc­
tions ' for a simplified stack-oriented vir­
tual (or imaginary) machine. ·These P­
codes can either be interpreted by a pro­
gram which performs the actions expect­
ed of the virtual machine, or they can be 
translated into code for a different (real) 
machine, in this case the Z-80 micro­
processor of the Tandy TRS-80 micro­
computer. Both of these options are pro­
vided in the Pipe Dream People's Pascal 
implementatlon. · 

In addition, the compiler has the option 
to compile for syntax errors only (no 
p.,.code object file being produced), for 
increased speed and possibly less oper­
ator intervention. 

The compiler also has the option to 
produce a listing on a lineprinter if one 
is attachedto the system. 

2. INVOKING THE COMPILER: 
To compile a People's Pascal program, 

it is first necessary to "CLOAD" and run 
the "PPEC" editor/compiler program. 
Refer to People's Pascal editor operating 
instructions. A source program may be 
typed into the text buffer for compilation, 
and/ or source code may be compiled from 
cassette using the "$INCL" include-file 
option. In addition, a source program may 
be read into the text buffer for compilation 
and/ or editing. 

After any required editing of the source 
program, the compiler can be started with 
the "C" command. The compiler starts 
compilation with the first line of source 
code in the text buffer, If it is required 
to compile from an existing source file 
on · cassette, then it will be necessary to 
enter a line such as: 

100$1NCL ]FILENAME[ 
into the text buffer before compilation, 
where /FILENAME/ is the name of the 
People's Pascal source file which is to 
be compiled. 

Note that currently, the "$INCL" com­
piler option is not nestable. It can only be 
used as part of a line of source code in 
the text buffer (i.e., as part of the pro­
gram mainline). 

Also,- the ,line mµst appear exactly as 
specified, without any leading or embedded 
spaces in the "$INCL" statement, apart 
from the space before the filename. 

Note also that the filename supplied is 
currently required as an operator aid 
only. No filename checking is performed 
in the current version. 

3. OBJECT FILE 
OPTION (OBJ FILE?): 

After initialization of the "C" command, 
the compiler will prompt with "OBJ 
FILE?". If the reply is null (just Enter) 

then no object file will -be produced, and 
the compile will be for syntax error­
check only. Any non-blank reply to this 
prompt will result in a P-code cassette 
object file being produced. 

4. LINEPRINTER OPTION (LP?) : 
The compiler will then · prompt with 

"LP?". 
If the reply to this question is "Y", then 

the input source program lines and the 
compiled object code will be printed on 
the lineprinter, as well as being shown 
on the display. 

If the reply to this question is null 
.(just ,{enterA) or "N", the no-lineprinter 
output will be generated. 

For systems without a lineprinter, it 
. is suggested that this prompt be deleted 
from the PPEC compiler code, to avoid 
the annoyance of a prompt to which the 
answer is always the same. 

5. COMPILER OPERATION: 
After initialization, the compiler will 

proceed to compile the specified source 
program. 

On encountering a syntax or (gramatical) 
error, the compiler will display a diog­
nostic error message indicating the type 
of error. 

The compiler will then return to the 
editor, to allow the error in the sour ce 
code to be corrected, and possibly r e­
compiled. 

6. MOUNTING OBJECT 
CASSETTES 
(OBJ CAS READY?): 

If a P-code object file is being produced, 
then after it has compiled about 50 
P-codes, the compiler will prompt for an 
output cassette for the object file to be 
written to. 

A previously-erased cassette should 
be mounted and _the recorder placed in 
record mode. 

When the output cassette is ready, the 
Enter key may be pressed, and the com­
piler will write a block of object code to 
the cassette and proceed with the com­
pilation. 

If no input cassette is being used ($INCL) 
then no further operator intervention 
should be required until the compilation 
is complete. Assuming a successful com­
pilation, the output cassette will contain 
a P-code object file version of the pro­
gram, which may be, used as input either 
to the People's Pascal interpreter to test 
the program, or to the translator to make 
a final system-loadable version of the 
program in Z-80 machine language. 

If the compiler is ac~epting input from 
a cassette file ($INCL), and an object file 
is being generated, then it will be neces­
sary to periodically swap cassettes and 
cassette recorder operating modes when 
the CQmpiler prompts. ' .. ·· -. , , 

This process is made possible by the 
blocking of both source and object data 
on cassette. Data is read in or out a block 
at a time, and the cassette is stopped on 
an inter-block gap, at which time it may 
be safely removed and later remounted 
without any loss of data. 

The process of swapping cassettes is 
somewhat tedious andhuman-errorprone, 
so be careful. If an additional cassette 
recorder is available, then both recorders 
can be mounted in parallel (with extr a 
jack plugs, etc.) with a ganged switch be­
tween them. 

One can be left with the object cassette 
in Record mode, and the other with the 
source cassette in Read mode, and the 
switch operated between them on prompt 
from the compiler. 

If an expansion interface is available, 
as weli as a second cassette, then the 
compiler can be simply modified to write 
its object files to the second cassette, 
and no operator intervention will be r e­
quired for the object cassette after init­
ialization. 

7. MOUNTING SOURCE 
CASSETTES 
(READ CASEl ?): 

If the "$INCL" option is used, then the 
compiler will, on encountering the $INC L 
line, prompt for tlie required file as fol­
lows: 

FILE /FILENAME/ REQD- READ CAS? 
At this point, the appropriate sour ce 

cassette should be mounted (remove any 
object cassette first) and positioned just 
before the start of the file. 

The cassette recorder should be placed 
in Read (replay) mode. 

When everything is ready, the Enter key 
may be pressed, the compiler will r ead 
the first block of source code from the 
cassette and proceed with the compila­
tion. 

(Note that the line numbers in the in­
cluded file bear no relation to the l ine 
numbers in the including file). 

If an object file is bing generated, then 
it will be necessary to periodically swap 
cassettes on prompt from the compiler. 
Cassettes should not be swapped in an­
ticipation, since it is not always possible 
to predict which cassette will be required 
first (refer to previous section). 

Note that neither object cassettes nor 
source cassettes should be· rewound or 
otherwise interfered with during compil­
ation. They should be simply ejected or 
remounted as required by the compiler. 

# # # ; 



Here 's how 
When receiving your People's Pascal I Program 
Development System, you might first enjoy seeing 
a 'compiled program run. Find the Bullseye demon­
stration object (machine language) program, and 
load it under the SYSTEM command' 

when Level II prompts READY 
type SYSTEM (and enter) 
computer prompts: *? 
user types NONAME (and enter) 
after load is complete, computer prompts: *? 
user types: I 
play the game, 

1-TO USE PEOPLE'S PASCAL I: 
Load PPEC1 the editor /compiler (first program on 
side A), But first, set memory size to 29700, This 
is of utmost importance, The computer ·will ask 
MEMORY SIZE? when you break out of Bullseye, 
and when it comes up from a cold start, and when 
you type, from the READY prompt: 

SYSTEM (enter) 
it prompts *?, and you enter /~, then 29700. 

Now on the READY prompt type and enter CLOAD, 
After loading, and before typing RUN, if you want 
to make a back-up copy, replace Tape 3 with a 
blank and type CSA VE, After verifying your CSA VE 
with CLOAD?, you are ready to proceed, Once you 
progress beyond the menu on the screen, you can 
never regain this list. The commands are written 
on page 13 of TRS-80 Computing 1:4. It should be 
noted that R (read) is similar to CLOAD, and W 
(write) to CSA VE. Also, L (list) is a display com­
mand ("print" in TRS-80 lingo), and P (print) is 
a true print command, "print" as in "printer" 
(LPRINT or LLIST in TRS-80ese), 

A-To try compiling the Bullseye source program, 
locate the demonstration Pascal program. the 
third load on Side A, Use Rl~~; it is easie~ than 
repetitive Rs. Make sure your Remote plug is into 
the tape recorder whenever using the Editor I 
Compiler, Translator or Interpreter, DO NOT 
allow the recorder to stay in Play position any 
length of time while the computer has the recorder 
stopped, because the pressure roller pushing against 
the capstain will cause a permanent depression 
that will result in a fata! dropout-if not on side A 
then side B, If the display says you have a FC 
error, read tape again and reload the source 
program. FC error means read error. 

B-To Compile, have the file in memory (step A 
above, or C below) by either typing it in or 
reading it in by cassette, To the questions LP? 
and OBJ FILE?, hitting Enter means a no, and 
Y "yes". If you answer OBJ FILE? "YES" and 
are commanded by the Pascal program (source 
file) to use $INCL, you are going to have to 
switch back and forth from reading the source 
program of the Pascal Library to writing onto a 
blank tape, 

When OBJ CAS READY? is displayed, remove 
the Pascal source-program tape from the recorder, 
Do not rewind or change position of the source 
tape, Insert the blank tape, advanced beyond the 
leader; put recorder into Record mode and de­
press Enter key, If READ CASl is displayed, just 
put the source tape back in and push Play and again 
hit Enter. The display will come back again with 
OBJ FILE READY. You must put the blank tape 
(same one back in, configure for Record, and hit 
Enter. Reminder: have your Remote plug in when 
working with Editor /Compiler, Translator and 
Interpreter, 

DISTRIBUTION 

INSTRUCTI ONS, Cont: 
1 CLO.ill and RUN the Editor /Compiler, 

PP EC.BAS, 
2 Position tape at the start of the Spirolateral 

source program, SPIRO.PAS (People's Pascal 
source files can be located on the distribution 
tape audibly by their numerous short blocks). 

3 Read the complete file SPIRO.PAS into the text 
buffer with an RlOO command. An FC ERROR 
AT 247 message indicates that the cassette file 
has been misread, or a file of the wrong format 
has been read (not a People's Pascal source 
file. 

4 List the contents of the text buffer with the L 
command, You will see comments indicating 
where the library procedures start and finish, 
Use Enter-not Break-to halt the listing, 

The library procedures are SET(ON, x, Y), 
RND(SEED) and AT(POSN). Note the line num­
ber range, 

5 Mount a blank cassette, This will be your lib­
rary file cassette, 

6 Save the library procedures to the cassette, with 
a write command using the line number range 
containing the library procedures; i.e., W200-
299, Then use the E command to write an EOF 
(end-of-file) mark to the cassette. 

7 Repeat the save further up the tape for a back­
up copy. 

8 Rewind and dismout the tape, and remove the 
write-enable tab, to prevent accidental erasure. 

-JOHN ALEXANDER 

to load People's Pascal 
C-To load other files just delete (D) the resident 
file and type or load from tape the new program to be 
compiled, When keyboarding, precede and end every 
line with a double-quote sign (") before the line 
number, 

2-Load PPINT if you wish to debug a People's Pas­
cal program, prior to translating it into a Z-80 
object program. This should not be necessary for 
the sample programs. The P-code interpreter 
executes Pascal object code (P-code) output from 
the People 's Pascal compiler, The P-code cas­
sette file is r ead into memory and then interpreted 
under operator control. The program is written 
in People's Pascal, and both source (Pascal) and 
object (Z-80) versions are supplied, Load the ob­
ject version of the interpreter under SYSTEM, 
with filename being NONAME, If you wish to 
copy PPINT onto another tape, to provide a back­
up copy, use T-Bug, or a copying program. 

To the questions " PC ODE ADDRESS" 1 "READ 
IN PCODES" and "MOUNT PCODE INPUT FILE 
ON CASI'', hitting Enter means a yes answer. 
Use "N" for no. 

When INT >? comes up and you put in a com .. 
mand "E", the program comes back with a "?" 
(question mark), insert a line number. 

3-Load PPTRANS, which translates P-code files into 
Z-80 machine code (object files), This program 
is written in Basic, and must have memory size 
set to 23000. To do this, type: 

SYSTEM the computer prompts with: 
*? you reply: 
/~ (making the line appear *? /~ 

the computer asks: 
MEMORY SIZE? reply 23000 (and Enter). 

Then CLOAD the translator program, For back­
up copy of PPTRANS, CSAVE before running it, 
If your answers to program questions are the 
same as the answers shown in parentheses, just 
hit Enter. Example: 

PCODE START ADDRESS (24000)?-
Write down the last address; message will read: 

last/ADDR =23988 (HEX 5DB4) 

4-Load PPRUN run-time system (object file version) 
program. This provides subroutines which are cal­
led by translated People's Pascal programs, Refer 
to documentation, the 1:4 TRS-80 Computing, page 
12., for details. Two source versions of the run­
time system, in Editor/Assembler, also are in­
cluded on Tape 3, Enter SYSTEM mode: 

SYSTEM and at the prompt type filename 
*? NONAME and at the next prompt mount 

T-Bug in recorder and enter 
filename 

*? TBUG and at next prompt enter "/' 
*?I 

Now the system will write the user's object pro­
gram to tape. It is wise to make two copies, These 
copies are made using the "P" command in T-bug, 

5-You now should be able to run the People's Pas­
cal Z-80 translated programs, in the SYSTEM 
mode: 

SYSTEM at the prompt, enter filename 
*? the name you gave the program (NONAME?) 
*? I for more detail, see page 8 and 9 of the 

documentation, TRS-80 Computing 1:4, 

r------- ----- -- --------- -----1 
ME TE R BOX 

diode 
TRS-80 1 amp 

cassette 50 v 
plug 

black plug R 

or DIN .15uf 
panel 
meter 

connector 1 25 v 
terminal 4 1 

GND 

SK 
pot 

8 Ohm 

NOTE: 
pot is audio taper 
panel meter is 50uA DC, 

from Radio Shack 
R is approximately 33 K-

total resistance of R plus meter 
must equal exactly 50 K 

full swing on 50uA meter 
corresponds to 2.5 V D.C. peak 

tape recorder 
ear jack 

~------- ----- - ---------------~ 
INEXPENSIVE LOADING AID-This circuit is input to 
unmodified TRS-80 used by CIE to test People's Software 
release tapes. User might still find meter helpful even with 

free Radio Shack XRX-m modification, which everyone 
should get. Level D tapes load at 1 OuA on meter, Level I at 
20uA, Circuit .was designed by John Strong. 

TAPE LOADING AIDS HELP 
How can the TRS-80 owner ensure easy tape loading'! 
There is no easy answer! 

Back in TRS-80 year one, John Strong designed his 
Strong box meter circuit. CIE has used these ever 
since, currently using one on the computer we use to 
test People's Software r elease prints . See diagram 
for. details of Strong box. All parts a r e available at 
Radio Shack. 

The next improvement in tape-input reliability 
came as the free Radio Shack XRX-III modification . 
We have heard good reports on this mod, but have had 
less than spectacular results with it here at CIE. Two 
of our four machines have XRX-III boards installed, 
but the two used to test People's Software release 
prints are unmodified, so that our tapes are tested 
under the most severe conditions . 

Our modified machines are less "touchy'~ than the 
unmodified ones, but they are still more stubborn than 
we would like them. 

Next to come to our attention was the supposed­
improved loading of tapes when you use Level 3 Basic 
from Microsoft. We didn't notice any improvement in 
loading. 

Dave Miller and Paul Goelz sent us one of their E-Z 
Loader bare boards , which they sell for $6. We were 
very excited about this circuit, which is explained in 
the September 73 Magazine. Imagine, a little digitizer 
circuit that restores your tape-input signal to the 
same shape it was when outputted to computer , for 
only $6. 

The parts list for E-Z Loader gives Radio Shack 
stock numbers . We wentto Radio Shack and bought all 
the parts except resistors , which we had in the parts 
box. Cost was over$24. Then, inordertoget the board 
made, so that it wouldn 't just sit around as a pile of 
parts, we asked a neighbor to build it for us. That cost 
$18. Our E-Z Loader totaled as much a s a 
commercially-made product, but was a naked circuit 
board with exposed wi res, two of which were 110 V 
AC! 

Did E-Z Loader work? It made loading exceedingly 
easy, as its product name implies. It did not make 
tape-to-tape duplication possible, although the authors 
claimed it would. E-Z Loader reproduces only the top 
of the wave form. Our experience has been that both 
top and bottom spikes are needed. 

E-Z loader is a good buy if you either have most of 
the parts in stock, or don't mind taking the time to 
order them from a parts house such as Jade, a-n-d you 
you have the time to guild the board. It is available for 

$6 plus self-addressed-stamped envelope from: Paul 
Goelz , 2228 Madison pl., Evanston IL 60202. 

At this point, having been more than a year and a 
quarter into the project, and still not having easy 
loads, in a nice-looking package, plus tape-to-tape 
duplication (we are intrigued by the idea of adding such 
circuits to our tape-duplication amplifiers), we 
received a new product to test. 

Data Dubber from The Peripheral People is a nice­
looking plastic box that sells for $49.95. We bought 
one , and found it makes loading very easy. Just turn up 
the volume a little past the point where a red LED 
starts to flicker, and you're loading. We tried dubbing 
tape-to-tape and were delighted to find we could go 
three generations , but the third generation is a bit 
"touchy" on loading. This means the TRS-80 owner 
can copy good quality tapes that were CSAVed on a 
TRS-80 (original ta12es), but should get questionable­
quality dupes from duplicated tapes (commercial 
program tapes). Peripheral People are atBox 524, 
Dept. C, Mercer Island WA 98040, phone 206 232-4505. 

Microsette offers a similar product, called Data 
Enhancer, and Alphanetics has its Tape Digitizer, for 
$44.94 without cassette remote on-off switch, or 
$49.95 with, postage paid, from Alphanetics, Box 597, 
Forestville CA 95436. Microsette is at 777 Palomar 
av. , Sunnyvale CA 94086. 

ERROR IN DOCUMENTATION 
A paragraph on page 8 of the TRS-80 Computing 

Pascal documentation contains two errors which 
might mislead the user. About one-third of the way 
down column 1, it reads : "A write (X) will cause a 
number to appear on the screen equivalent to the value 
of X." 
This should read ''A write (X # ) will cause a number 

to appear on the screen equivalent to the value of X." 
This is the essential fact that is being communicated, 
that the '' x '' sign is a formatting character which 
causes data items to appear as numbers. 

Also, in the next sentence, i.e. "READ (A) will 
cause the input digits to be converted to a 16-bit 
integer ... " , should start "Read (A # ) will 
cause .. ", 

There is also a mistake on the second line of the last 
paragraph, but one on page 9, starting with "This 
normally will be hex '4AOO (decimal 18818)' ',actually 
should be, "This normally will be hex 4AOO (decimal 
18944)". 



People's Pascal distribution instructions: 
1-TURTLE GRAPHICS PROCEDURES 
The turtle graphics procedures may be copied to 
a separate file in the same way the library features 
may be separated from the spirolateral source 
program (see number 6 below), They could be 
copied to the same file as the library procedures 
but the turtle procedures may not be required fo; 
all programs that use the library procedur es, 
Refer to Ken Bowles' book "Microcomputer Prob­
lem solving using Pascal" (Springer-Verlag, 1977) 
for a full description of these procedures, and 
nu~erous example programs. For compatability, 
call the turtle file TURTLE.PAS. 

Note that in the turtle system, location (O, O) 
~orresponds to the center of the screen (63 23) 
rn the Tandy screen graphics co-ordinate system. 
After calling the INITURTLE procedure the turtle 
is initialized at location (0 , O), screen' center, at 
heading O, pointing up the screen. Pencolor is 
initialized at white , ready for drawing, 

It can be useful to create a file of dummv turtle 
procedures that in compiles can be used for ~yntax­
error detection only, These compiles will be speed­
ed up because the body of the turtle procedures 
will not be compiled, Once the program has been 
compiled free of errors, then the real. procedures 
can be used instead. 

A set of dummy turtle procedures would look 
like this: 

PROC MOVE(DIST); BEGIN END; 
PROC MOVETO(X,Y); BEGIN END; 
PHOC TURN(DEGREES); BEGIN END· 
PROC TURNTO(ANGLE); BEGIN END; 
PROC PENCOLOR(COLOR); BEGIN END; 
PROC INITURTLE· BEGIN END· 

You should u~e the' same line-~umber r ange as 
for the real turtle procedures, so that the same 
program area can be used in case you want to 
make the turtle procedures into part of your pro­
gram (the line numbers do not matter for $INCL 
(uded) code). 

USING TURTLE GRAPHICS PROCEDURES 
In or_der to use the turtle graphics procedures in 
your programs, it is necessary to have the fol­
lowing declarations in your program: 

CONST BLACK= O; WHITE = 1; NONE =2· 
(*PENCOLORS*) ' 
VAR TURTLE: ARRAY (5) OF INTEGER· 
PROC SET(ONOFF,X,Y); BEGIN CALL (19968)­
EI'ID; - . ' 

$INCL TURTLE.PAS (*TURTLE GRAPHICS 
PROCEDURES*) 

Note that the SET procedure is in the library, so 
you do not need an explicit declaration of it if you 
have $INCL(uded) or merged in the librar y, 

Note also that the $INCL TURTLE.PAS line is 
not required if the turtle procedures are part of the 
program, as in the sample SP IRO.PAS. 

In addition, the INITURTLE procedure should be 
called before any other turtle procedures, This 
procedure initializes the "turtle" arr ay which 
ccmid otherwise contain unpredictable junk,' 

The turtle array is used as follows (this infor­
mation is not required to use the turtle procedures): 

TURTLE(O) = X-coord of turtle shifted left 7 bits 
TURTLE(l);::: Y-coord of turtle shifted left 8 bits 
TURTLE(2) =current heading of turtle (0-360 de-

'I'URTLE(3) = sine of turtle(2) * 128 
TURTLE(4) =cosine of turtle(2) * 128 

grees) 

TURTLE(5) = current pen color (0 black· 1 white· 
' ' ' ' 

2-NEW P-CODE/Z80 
TRANSLATOR 

2, none) 

Th.is ver sion (2,2) eliminates one bug wher eby 
consecutive liter al s trings in a write s tatement 
wer e not translated properly, 

This version also has an additional translation 
option (not required) allowing relocation of trans­
lated Z80-code to a new address. The translated 
code will be s tored at the Z80-code addres s spe­
cified in the previous ques tion, but will be gener­
ated to execute at the relocation address, 

The r elocation address defaults to the same 
addres s as the Z80-code addr ess. 

This feature allows Z80-code to be generated to 
r un anywhere in RAM memory except for the space 
occupied by the r un-time system. Previously, the 
area used by the trans lator could not be used for 
translated Z80-code, since the t r anslator would be 
overwriting a part of itself, 

1'1 order to use the r elocation address featur e 
the generated code will have to be moved to it; 
execution (i, e. the relocation) address with the 
RSM monitor from Small Systems Softwar e, or its 
equivalent, or a s m911 program. The new vers ion 
of the People ' s Pascal interpreter has been re­
located in this manner. 

After the code has been relocated it is necessary 
to change the r un-time sys tem branch address to 
point to the new s tar ting address rather than hex 
59D8 (decimal 23000), which is the normal start-

ing address for translated Z80 code, 
The starting address of the translated Z80 code 

is held at address hex 4A09 in the run time system, 
To mojify the run-time system for a relocated 
program, it is necessary to change the contents of 
the two bytes starting at this address from hex 
D3,59 (i.e. addr ess 59D8) to the low and high bytes 
of the new starting address (i,e, the relocation 
address entered into the translator), The sequence 
of steps would be as follows· 
1 Run the translator, ente;ing the desired re­

location address (in decimal), to produce the 
Z80-code version of the program .. 

2 Load RSM <Jr the equivalent, and move the 
generated Z80 code from its current address 
(23000 decimal by default) to the relocation 
address, 

3 Load the run-time system, TPRUN,Z80, and 
change the t~o bytes at 4A09 from D8,59 to 
the low and high bytes of the relocation ad­
dress. 

4 Save a complete image containing the modified 
r un-time system code and the translated Z80 
code onto a blank cassette, Run the relocated 
program by starting at the run-time-system 
entry point of 4AOO. 

The relocation address feature is not required for 
most programs, It is provided to allow people to 
edit, recompile, translate and move the People's 
Pascal interpreter if they wish, If you do not want 
to use this feature, then simply press enter in 
response to the RELO:::::ATION ADDRESS? ques­
tion. 

3-NEW P-CODE INTERPRETER 
A new faster version of the People's Pascal in­
terpreter is supplied. This version is written in 
People's Pascal, 

This version r equires P - code to start at address 
24500 or higher, rather than the 24000 allowed by 
the Basic version. · 

The source code for the interpreter comes in 
t~ree files: the mainline (TPlNT,MAIN,PAS); the 
smgle P--code execution procedure (TP1NT.EXEC, 
P .. code read-in procedure (TPINT.READPCODES, 
PAS). The latter two file_s are $INCL(uded) into 
the main program. Note that this program will 
immediately try to read the cassette if the res­
ponse to the READ IN P -CODES (Y)? question is 
Y, - -

This program resides from hex 4980 to hex 
5F44 with entry point hex 4AOO. 

It's name for SYSTEM loading purposes is 
NONAME. The T-Bug area (below 4980) is used 
for stack space, The program has been compiled 
to interpret programs with a m'.l.ximum s tack size 
of 400 16- bit entries , 

4-NEW RUN-TIME SYSTEM 
A new version of the run-time sys tem is supplied, 
This version contains a 90-byte sine lookup table 
for the turtle graphics procedures, and cassette 
read and write subroutines for the new version of 
the People's Pascal interpreter, 

The new source code is entirely contained within 
the TPSET.ASM ;;ource file. 

The m8.in run-time system source file TPHUN. 
ASM has not been altered. (Both objects are in­
cluded in the TPRUN.Z80 object code), TPRUN. 
ZBO now resides from hex 4980 to hex 4F6E with 
entry point hex 4AOO, For SYSTEM--loading pur­
poses its name is NONAME, 

5-SPIRO DEMO PROGRAM 
This program is based on one in Ken Bowles' book. 
Note how to read a character string into an array 
in People's _Pascal, The program draws a line for 
each R or L typed in, The line s tarts off one unit 
in length and is increased by one unit at each step. 

The whole picture is multiplied by the size in­
put. The turtle turns left or right depending on 
whether the current letter is L or R. 

The angle turned is the one input, For instance, 
try SIZE= 2, angle.t/'92, SEQ= RRRRRRRRRRR 
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 

If Enter is pressed after the pattern has been 
drawn, the pattern will be repeated stariing a t the 
current angle. 

A wide variety of interesting patterns can be 
produced with this program. You ma.y give a copy 
of SPIRO,Z80 to your friends without infringing on 
the Pipe Dream Software copyr ight, 

SPIRO.Z80 resides between hex 4980 and hex 
6200, and its entry point is hex 4AOO. It's name 
for SYSTEM IoadLrig purposes is NONAME. 

6-T HE PASCAL LIBRARY 
The People's Pascal source library procedures 
a.re supplied on tlle distribution tape both as a 
separate recor ding and as part of the Spirolateral 
source pr ogram. If you should want to separate 
these procedur es from the Spirolateral source 
here is how you do it, This procedure is necessar; 
if you want to have a copy of the turtle graphics 
procedures, and the way you do it is the sam-e: 
You need a separate copy for easy inclusion 
($INCL) or merging into your own programs., 

Nr,te: merging leads to easier compiles, but in­
clusion at compile time may be the only alter ­
native if your porgram is lar ge. 
To make your own copy of the library: 

(Continued on next page) 

PEOPLE'S PASCALi 
Tape contents: 

SIDE A: 
PPEC,BAS (Editor /Compiler), CLO.ill, set mem­

ory size to 29700. 

P P INT.Z80 (P -code interpreter, in Z80 code), 
load under SYSTEM "NONAME" (# P4980 

) $F44 4AOO NONAME), ' 
This new version of the People's Pascal 
Interpreter contains a complete copy of the 
r un-time sys tem TPRUN. ZBO, except that two 
bytes have been changed, so that it jumps to 
a new starting address of the translated 
progr am on initialization. This is because the 
PPINT.Z80 progr am has been relocated lower 
down in memory to give the maximum availalbe 
user memory for P -code programs - 8 Kbytes, 

PPINT,MAIN.PAS, inte rpreter, mainline source 
pr ogram, written in Pascal. If you wish to 
r e- compile it (not necessary, s ince the Z80 
code version is above), load under PPEC, 

PPlNT.READ P-CODES,PAS (part of the inter­
preter Pascal source, to read P -codes), load 
at compile-time under PPEC, 

PPINT.EXEC,P AS (part of the Interpr eter Pascal 
s ource that executes P - codes), load at com­
pile time under PP EC, 

SPIRO.PAS, Spirolateral demons tration Pascal 
sour ce program (needs compiling), load under 
PPEC, 

SP IRO, Z80, Spirolateral demonstration object 
(machine language) pr ogra m, compiled vers ion 

of above, translated into 
under SYSTEM, with file 
(#P 4980 6200 4~00). 

A 
~IDE B: 

Z80 code, Load 
name NONAME 

' PPTRANS (Pascal P-code to Z80 translater), 
PPTRANS.BAS (Pascal P-code to Z80 trans­

lator), version 2,2, CLOAD, setting memory 
size to 23000. 
This new version fixes a minor bug, where 
two consecutivP, literal s tring·s in a " write" 
s tatement were not tr anslated properly, i, e.: I 
write ( 'hello', ' there'). Also, conta ins ob,iccr ~ , --" 
code relocation facility explained in distri­
bution ins tructions, 

PPRUN, Z80, run- time system for translator, 
load under SYST EM,. NONAME. This new ver­
s ion contains 90-byte s ine table and cassette 
routines, a s explained in distribution instruc­
t ions . For copying under T -Bug, punch com .. 
mands (#P) are 4980 4Fl.E 4~00 NONAME '1. A • 

PPRUN,ASM, r un-time system .source, load un­
der Tandy TRS- 80 editor /assembler (optional). 

PPS ET ,ASM, part of the run- time system source, 
to set gr aphics, load under Tandy TRS-80 
editor/ assembler (optional). 

BULLSEYE demonstration Pascal s ource pro­
gr am (needs compiling), load under PPEC. 

r'a.Sl...\'6 1 l... Od)) ......... d.t..e. J'l"t C 
BULLSEYE demonstration object (machine lan-

0 guage) program, Z80 code, load under SYSTEM, 
/ NONAME (to make T-Bug copy, punch com­

mands are 4982 65A8 4• oo). 
A - ; f!'iF{ 



PC ODE 
INTERPRETER 

/PPINT/ 
OPEHATING INSTRUCTIONS 

1. lNTRODUCTION: 
The People's Pascal P-cocle interpreter 

(PPI'.JT) executes Pascal object code (P­
code) output from the People's Pa.seal 
comnUcr. 

Tl~e P-code cassette file output from 
the compiler is read into memory and 
then interpreted under operator control. 

Various debugging commands are pro­
vided, such as the setting of breakpoints, 
to allow monitoring of program execution. 

The interpreter currently is written in 
Bash. A faster vei'sion will soon be avail­
able ''Titten in People's Pa.seal. 

P.FINT is not intended for normal run­
ning ,..,f programs. Once a program has 
been clcbugged, it will be translated to 
Z-80 ma.chine code with the People's 
Pascal translator for fa.st execution. 

2. RUNNING the INTERPRETER: 
Ht'';uired operator responses are un­

derlLed. Here is what you see on the 
screcE: 

READY 
/§X§J"EM 

MEMCliff SIZE? 24000 

(Mount the PPINT program cassette for 
read;_ 

REAJYY 
/CLZ}J:\D 

(Wait :.mtil PPINT has loaded). 

/m;;"_ 

THS-30 TINY PASCAL IKTEHPHETEH 
PIPE DHEAl\'I SOFTWARE 

P-CODE START ADDHESS (24000 )? 

(The default of 24000 is shown. If this is 
OK t;ien just press ]Enter[, otherwise 
ente.l' the address you want to use. This 
is th..c address that the P-code program 
will ';e loaded at, and address of the first 
P-coue instruction for the "H" (RUN) 
commm1d. In the current version, this 
acldrc;ss cannot be less than 24000.) 

HEAD IN P-CODES (Y)? 

(The ,;cfault of Y (yes} is shown. If[Enter] 
is pressed, then the interpreter will read 
in the P-code program from cassette. If 
the reply is '' N", then it ii:Pa:ssumed thar 
the P-code program is already resident 
in memory and the next question will he 
byparcsed). 

MOUNT P-CODE INPUT CASSETTE ON 
CASJ? 

(Motut the P-code object file output by 
the compiler on the cassette deck and 
pres:_; play. 

Pre,;,s [Enter] on the keyboard when 
cassette is ready. 

The P-codes will be read into memory, 
and ;some "ADD AT" forward-reference 
filmps should appear on the screen). 

INT/ 

(The i11te11Jreter is now ready to accept 
progr~un execution and monitoring com­
mancl;o described below): 

3. INTERPRETER COMMANDS: 
Int~orpreter commands consist of single­

letter mnemonics terminated by [Enter]. 
Some commm1ds will result in further 
prompting. 

3. 1 HUN PROGRAM - R: 
Initi<clizes the program-c0tmter and 

runs th0 program. 

3. 2 SINGLE STEPS: 
Executes the ne.xi P-cocle instruction 

and lYturns to comrnm1d mode. 

3. 3 GO ON-G: 
Continues the program from the cur­

rent program cotmter location. 
The program may have stopped at a 

hreakpoint, or after a single-step (S) 
comrn:01d. 

3. 4 DISPLAY 
PROGRAM STATUS -X: 

Di.sp.i.ays the program counter (P), the 
base register (B) zmd the stack pointer 
(T) o.l the Pascal P-machine (which the 
inten::1·cter is emulating). 

Th~' top two stack locations also are 
dispk:;cd. 

3. 5 DISPLAY 
PROGRAM TRACE -T: 

Displays the last few P-code instruc­
tions executed by the P-code program, 
in time-of-execution sequence. 

3. 6 DISPLAY 
ST ACK LOCATIONS - K: 

Prompts for a stack location (offset 
from start of stack) and displays six 
stack locations starting from this point. 

3. 7 SET BREAKPOINT - B: 
Prompts with the breakpoint number 

for a brealqmint address (P-cocle program 
location). When the program cotmter 
reaches any value equal to a breakpoint 
•.Talue, the program will be stopped be­
fore the execution of the instruction at 
that location. The status of the program 
m1d its variables may be examined. The 
program may be continued with the "G" 
(GO) command or with the "S" (SINGLE 
STEP) commm1d. 

3. 8 CLEAR BREAKPOINTS - C: 
Clear all the breaJ.;poi.nts set by the 

"B" conunm1d. 

3.9 DISPLAY 
BREAKPOINT LOCA TIONS-Y: 

Displays hreah11oint locations previous­
ly set with the "B" commimd. 

3. 10 EXAMINE 
P-CODE LOCATION-E: 

Prompts for a P-code location, which 
is loaded into the P-code location dis­
play pointer. 

The P-code instruction at this location 
is displayed. 

3.11 EXAMINE NEXT 
P-CODE INSTRUCTION-N: 

Increments the P-code location display 
pointer and displays the P-code instruction 
at that location. 

(Note: if this instruction has been used 
once, it is only necessary to press [Enter] 
to repeat it, stepping on to the next 
location.) 

3.12 EXAMINE LAST 
P-CODE LOCATION - U: 

Decrements the P-cocle location dis­
play pointer m1d displays the P-code 
instruction at that location. 

3.13 QUIT -Q: 
Exit from interpreter. 

4. P-CODE INSTRUCTIONS: 
(Note: POP X means remove the top 
element of the stack and load it into X 
(the stack is now one smaller). PUSH 
X means place the value of X onto the 
top of the stack (the stack is now one 
bigger).) 

LIT ¢,Nl'V LITERAL: PUSH NN 
OPR ¢,0 PROCESS AND FUNCTION 

return operation 
OPR ¢,1 NEGATE: POP A, PUSH-A 
OPR 0,2 ADD: POP A, POP B, PUSH 

B+A 
OPR 0,3 SUBTRACT: POP A, POP B, 

PUSH B-A 
OPR 0.4 MULTIPLY: POP A, POP B, 

PUSH B*A 
OPR ¢,5 DIVIDE: POP A,, POP. B, 

PUSH B/A 
OPR ¢,6 LOW BIT: POP A, PUSH 

(A and 1) 
OPR ¢, 7 MOD: POP A, POP B, PUSH 

(B MOD A} 
OPH 0,8 TEST EC<!UAL: POP A, POP 

B, PUSH (B=A) 
OPR ¢,9 TEST NOT EQUAL: POP A, 

POP B, PUSH {B <>A) 
OPR ¢,1¢ TEST LESS THAN: POP A, 

POP B, PUSH (B <A) 
OPR ¢,11 TEST GREATER-THAN or 

EQUAL: POP A, POP B, 
PUSH (B>=A) 

OPR ¢,12 . TEST GREATER THAN: POP 
A, POP B, PUSH (B >A) 

OPR ¢,13 TEST LESS THAN or EQUAL: 
POP A, POP B, PUSH (B <=A) 

OPR ¢,14 OR: POP A, POP B, PUSH 
(B OH A) 
NOTE: these are the logical 
operators OH, AND alllt NOT) 

OPR 0,15 AND: POP A, POP B, PUSH 
(Band A) 

OPH 0,16 NOT: POP A, PUSH (NOT A) 
OPR ¢,17 SHIFT LEFT: POP A, POP 

B, PUSH (B shifted left by 
A bits) 

OPH ¢,18 SHIFT RIGHT: POP A, POP 
B, PUSH (B shifted right by 
A bits) 

OPR ,0,19 INCREMENT: POP A, PUSH 
A+l 

OPH ¢,20 DECHEMENT: POP A, PUSH 
A-1 

OPR ¢,21 COPY: POP A, PUSH A, PUSH 
A 

LOD L,D LOAD: LOAD A from (base of 
level offset L) + D, PUSH A 

LOD 255,0 LOAD byte from memory ad­
dress which is on top of sttick 
onto top of stack: POP ad­
dress, load A with byte from 
address, PUSH A 

LODX L,D INDEXED LOAD: POP index, 
load A from QJase of level 
offset L)+D+ Index, PUSH A 

STO L,D STOHE: POP A, store A at 
Qx1se of level offset L) + D 

STO 255,¢ STOHE IN MEMOHY: POP A, 
POP address, store low byte 
of A at address 

STOX L,D INDEXED STORE: pop Index 
pop A, store A at (Base of level 
offset L) + D + Index 

CAL L,A Call procedure or function at 
P-code location A, \vith base 
at level offset L 

CAL 255,¢ Call procedure address in 
memory: POP address, PUSH 
return address, JUMP to ad­
dress 

INT ¢,NN ADD NN to stack pointer 
JMP ¢,A JUMP to P-code location A 

JPC 0,A JUMP IF THUE: POP A, 
IF (A and 1) = 0 then jump to 
location A 

CSP ¢,¢ INPUT 1 CHARACTEH: IN­
PUT A, PUSH A 

CSP ¢,1 OUTPUT 1 CHAHACTER: 
POP A, OUTPUT A 

CSP ¢,2 INPUT AN INTEGER: INPUT 
A#, PUSH A 

CSP ¢,3 OUTPUT AN INTEGER: POP 
A, OUTPUT A# 

CSP ¢,8 OUTPUT A CHARACTER 
STRING: POP A, FOR ·I: = 1 
TO A DO BEGIN POP B; 
OUTPUT B; END 

NOTE: the result of a logical operation 
such as (A= B) is defined as 1 if the con­
dition was met aml 0 otherwise. 

PCODE TO 
Z80CODE 

TRANSLATER 
/PPTRANS/ 

OPERATING INSTRUCTION 

1. INTRODUCTION: 
The People's Pascal translator pro­

gram trm1slates P-code object files out­
put by the People's Pascal compiler 
(PPEC) into Z-80 microprocessor mach­
ine language object programs which can 
be saved with T-bug onto cassette, and 
loaded under the "system'' com1mmd. 

The trm1slator has two optimization op­
tions. Z-80 cocle object programs cm1 be 
optimized for speed, in which case the 
the program occupies about the same 
space as the P-codes. 

Alternatively, object programs cm1 be 
optimized for minimum memory usage, 
in which case the program occupies about 
half the memory but runs at about half 
the speed. 

The P-cocle object program is read 
into memory. The normal starting ad­
dress is 24000 (decimal). 

After two passes of the P-code to gen­
erate a sorted table of P-cocle jump des­
tinations and their corresponding Z-80 
code addresses, Z-80 code is generated 
m1d stored in memory, nonnally starting 
at address 23000, 

If the z-80 program is large enough 
then it will overwrite the eady portion 

: of the P-code prognun, which .is no longer 
required. 

The end of the Z-80 program crumot 
"catch-up'' with the end of the P-code 
program in a 16 K machine. 

For a larger memory, the P-code may 
be started at a higher address. 

Because of the size of the PPTRANS 
program, Z-80 code cmrnot be stored at 
addresses lower thru1 23000. 

This leaves a.bout 9.5 K bytes for the 
Z-80 program. 

(Note that some of the memory below 
23000 is used by T-bug and the People's 
Pascal run-time system (PPRU:'>J). The 
rest is available for user-generated as­
sembly-language subroutines callable 
from People's Pascal ru1d/or for stack 
space- refer to memory maps.) 

2. CHOOSING ADDRESSES: 
Normally, the default addresses sho\\11 

below are satisfactory for translated 
People's Pa.seal programs. 

However, the trru1slator provides the 
option to specify other addresses for ex­
ceptional cases, such as where aprogram 
has a very large stack requirement (i.e., 
greater thm1 3 K due to large arrays or 
use of recursion). 

To obtain a larger stack, if the pro­
gram itself is not too larg·e, then 32500 
may be used as the stack address. 

If the program is large, then theyro­
gram itself may be created at a higher 
address than 23000. Note this may in­
volve reading-in the P-codes at a higher 
address also), and the now-larger space 
beneath the program used for stack. 
Note that this alternative is less desir­
able since the total amount of memory to 
be saved onto cassette is correspondingly 
larger as the runtime system is at a 
fixed location, and thus the program takes 
longer to load. 

3. OPERATION: 
Note:Operator responses are underlined. 
1. READY 

>SYSTEM 

2. *? 10 
3. MEMORY SIZE? 23¢0¢ 

(now motmt PPTRANS program cas­
sette) 

4. READY 
>CLOAD 

(wait until load is finished) 

5. HEADY 
>RUN 

TRS-80 COMPUTING 1:4 PAGE 9 

6. THS-80 PEOPLE'S PASCAL TRANS­
LATOR 
DEFAULT REPLIES TO PROMPTS 
ARE SHOWN IN BRACKETS: (paren­
theses): 

P-CODE START ADDRESS (24000)? 
<ENTER> QE. )'.OUr address 

7. Z-80-CODE START ADDRESS 
(23000)? 
<ENTER> _Qr~r address 

8. Z-80 STACK ADDRESS (GHOWS 
DOWN) (22999)? .2_ENTER < QE. )'.OUr 

address 

9. OPTIMIZATION (F=fast, S=small) 
(F}?> ENTER< or S 

10. DISPLAY CODES (Y )? 
<ENTER> or~ 

11. 

(pptrru1s rtms faster if codes 
not clesplayed} 

PRINT CODES (N)? <ENTEH> 

are 

or Y 

12. MOUNT P-CODE INPUT FILE ON 
CASl AND TYPE "RUN" 

13. 

14. 

(Now rewind and remove PPTHANS 
program cassette m1cl mount P-code 
object program cassette for input, 
type "RUN'' ruKl ''HUN"'. TI1e tran­
slator will read in the P-code cass­
ette, rmd perform translation. Wait 
until trm1Slation is complete, with 
the ratio between P-cocle and L':-80 
code, etc., being displayed on the 
screen.) 

(Note the last-used Z-80 ad~lress. 
The trm1slated Z-80 program is now 
residing in rn.emory starting at .ad­
dress 23000, or your chosen address, 
at which this code will be executed.) 

(Note the last addl'ess used by the 
Z-80 program which is displayed on 
the screen. Rewind m1d remove the 
:P-code input cassette. Mount the 
run-time system object cassette.) 

15. READY 
>SYSTEM 

(TI1e run-time system will be r~ad 
into memory. Now memory contams 
vom· translated program m1d the 
Peoples Pascal run-time system. 
W11en loading of the run-time system 
is complete, rewind and remove the 
run-time system cassette.} 

1 7. {At this point it is possible to run 
the program via the system com­
mru1d. However, it is. wise to save 
two copies of the program first; using 
T-Bug. To do thi;?, molmt tlie T-Bug 
cassette for input). 

1" *? TBUG 

(The Tandy T-Bug program will be 
loaded into memory. At this point, 
memory contains your program, the 
run-time svstem ru1d T-Bug. Using 
T-Bug, it is possible to make a copy 
of your program ru1d the run-time 
svstem, with or without a copy of 
i-Bug. This copy will be loadable 
uncler the "SYSTEM" commru1d. Re­
\\ ind :mclremovethe T-Bugcassette. 
:\:Iom1t a blru1k cassette for output.) 

19. *? !._ 

20. # E 4380 xxxx 4A¢¢ YYYYYY (for 
progrrun with T-Bug) 

OR 
# P 498¢ XXXX 4AfJ0 YYYYYY (for 

- pi·ogram withort T-Bug) 

(Where XXXX is the last-used ad­
dress of the Z-80 progrru11 in hex 
noted after step 13, m1d YYYYYY 
is the filename to be assigned to the 
program on cassette). 

21. (Wait until T-Bug "P" commm1d is 
complete, then reposition output cas­
sette mid repeat step 20 as 
mm1y times as required. newincl m1d 
remove the blm1k cassette ru1d write 
on it the program name ru1d the 
cassette tape counter locations of 
each copy of the program. TI1e elate 
can also be useful.) 

22. # J 4A¢0 (To run the program if 
required). 

4. RUNNING TRANSLATED 
PASCAL PROGRAMS: 

Normally, all that is required to run 
a People's Pascal program is to load it 
under the "SYSTEM" command, ru1cl to 
run it by typing "/" after it has been 
loaded into memory. 

This causes control to lie passed to the 
address which was specified as the pro­
gram entry point on the cassette tape 
file. 

This normally will be hes 4A.¢0 (decimal 
18818), which is the standard entry point 
of the People's Pascal run-time system. 

TI1ere is ru1 alternative enti>y point to 
the run-time system, hex 4Af)E, which 
allows the usei to initialize the People's 
Pascal stack pointer at other than the 
fixed value, and/or to nm a program 
which does not start at the st:.U1dard ad­
dress (5908 hex or 23¢¢¢ decimal.}. 



.PAGE 10 TRS-80 COMPUTING 1:4 

\.\'hen entered at this point (4A.0E) the 
run-time system will prompt for these 
values. 

T-Bug may be usedfordebuggingtrans­
lated. programs, although it is usually 
easier to use the P-code interpreter to 
find bugs. 

To use T-bug, type "/17280" after load­
ing the program, rather than just "/". 
Th:lB is the T-Bug entery point. Refer to 
Tanc.!y T-Bug operating instructions for 
further help in using T-Bug. 

PROGRAM 
DOCUMENTION 

TEXT EDITOR 
1. INT_RODUCTION: 

The PP editor is a line-oriented text 
editor using line numbers for text iden­
tifioRtion. 

Intra-line editing is not supported in 
the current version. 

Lines are stored in a reserve area of 
high-address memory called the text buf­
fer, 

The program is written in Level-II 
Basie with machine language subroutines 
to r:tove text up and down in the text buf­
fer for speed efficiency. 

2. COMMANDS: 
People's Pascal cornn;iands are: 

c- COMPILE - Press control to the corn-
piler. 

D- DELETE - Delete line number range. 
E- EOF -Write end-of-file mark 

to cassette file. 
F- J"REE -Free bytes left in text 

buffer enquiry. 
L- LIST - List lines in text buffer 

on screen. 
N- NUMBER - Renumber lines of text 

in the buffer. 
P - PRINT - Print lines on the line 

printer. 
R- READ - Read block(s) from a cas-

sette file. 
W- WRITE - Write line(s) of text to 

cassette. 

3. RECORD FORMATS': 

3, 1 LINE IN TEX'P BUFFER: 
Byte fj- - Length of line (0-255) includ­

ing self and line number bytes. 
Byte 1,2 - - Line number of this line in 

binary 0-32767 (1-32766 
available for user) 

Byte 3• N - Text of line 

3. 2 TEXT BUFFER: 

Line 1 - Dummy line, text= " ", line­
number = 0 

Lines 2 to N-1: actual lines of text 
Lina N: Dummy line, no text, line­

number = 32767 
Top byte: Buffer has been initialized 

flag (14 = has, any other value 
=has not) 

Top Byte-2-1: Saved copy of FA variable. 
This is the only variable that 
needs to be saved over a run 
command. (FA= address of 
last byte used in text buffer. 

3. 3 LINE RECORD IN 
CASSETTE FILE BLOCK: 

Byte J§: Length of text of line in bytes. 
If length would be equivalent 
to certain ASCII characters 
such as quote ("), then one 
space is added to line and 
length is incremented by 1 to 
avoid trouble with Level-II 
Basic I/O. 

Bytes 1 to M: Line number in ASCII 
numeric characters ( ~ <M < 6 ) 

Bytes M to N: Text of line 

3. 4 CASSETTE FILE 
BLOCK FORMAT: 

Maximum Size = 240 characters 

Byte 0: Quote symbol (") to hold block 
together through Level-II 
Basic I/O 

Bytes 1 to N: Lines of text 

4. PROORAM VARIABLES: 

L$ = Current line 
LN =Current line µumber 
LG = Length of a string 
V = Varptr .of a variable 
W =Varptr of a variable and tempor­

ary variable 
X =16-blt number (work variable) 
P =Pointer to (holds address of) cur­

rent line record in text buffer 
TA =Top address (32767) 
FA =Address of last byte used in text 

buffer 
SA = A.ddress of start of text buffer 
ML =Maximum line number allowed 

(32767) 

YY$ =Used in sneaky transfer ofline from 
text buffer to L$ 

LM = Last cassette I/ 0 mode (read/ write 
source/ object cassette) 

CM =Current Cassette I/ 0 mode 
BR =Bottom of line number range 
TR =Top of line number range 
A$ = Temporary string variable 
QL = Line number of current line in text 

buffer 
BL$ =String to hold cassette source file 

I/O block 
B$ =Temporary string variable 
PO =Pointer to last (old) current line in 

buffer 
Ql = Text buffer move parameter -

source address 

Q2 =Text buffer move parameter -
destination address 

Q3 = Text buffer move parameter -
byte count (HL=Ql,DE=Q2,BC=Q3, 
FOR LDDR, LDIR Z-80 instruc­
tions) 

z8$ = string variable used to hold Z-80 
code subrs executed via USR (0) 

5. PROORAM ROUTINES 
Note: The program has been renumbered 

from 1 with an increment of 1 to reduce 
its memory size. 

Because of the long lines allowed (256 
bytes) in Level-II Basic, additions and 
changes are still possible. 

If the program is renumbered, then 
lines 1-31§ should still start at 1 in in­
crements of 1 to avoid undue expansion. 

It is suggested that other lines be re­
numbered so that the new numbers equal 
the old numbers times 10, so patches etc. 
can still be applied, yet the new version 
still resemble the old. 

194-201 Once-only program initialization 
203 Input command prompt (mainline loop) 
204 Command interpreter 
205 Line insertion/ deletion 
209 Extract line number (LN) from line 
211 Position P pointer at line with line 

number LN in text buffer 
213 Decode line number range in L$ into 

BR and TR 
218 Display line on screen/printer 
219 Interpret line number range and find 

first line in text buffer 
220 List (L command) routine 
222 Delete (D) routine 
224 Write (W) routine 
230 Write end-of-file mark (E) routine 
231 Re-number (N) routine 
234 Write block to cassette (BL$) 
236 Write line to cassette (append line 

to BL$) 
242 Read (R) routine 
243 Put lines from current block (BL$) 

into ti;ixt buffer 
244 Read a block (Bf.$} from cassette 
24 7 Split next line from BL$ 
248 Point to next line in text buffer 
250 Copy current line in text buffer into 

L$,LN 
251 Insert (replace, delete) line in text 

buffer 
254 Delete line from buffer 
256 Restore FA fromreservedhighmem­

ory after a run command (which wipes 
all variables) 

257 Save value of FA in reserved high 
memory 

258 Put low, high byte of X into Z8$ 
259 Set up Z-80 machine language move 

routine for text buffer and execute 
this routine by obtaining address via 
V ARPTR for USR (0) 

260 Execute Z-80 machine language rou­
tine in Z8$ via USR (0) 

TINY PASCAL 
COMPILER 

PROGRAM DOCUMENTATION 

1. INTRODUCTION: 
For a full discussion of the principles 

of operation of this compiler, refer to 
"Byte" magazine, October, 1978, "A Tiny 
Pascal Compiler - Part 2: the p:.. 
Compiler", by Kin-Man Chung and Her­
bert Yuen. 

This program is largely based on the 
program listed in that article, but recoded 
in Level-II Basic and optimized for mini­
mum memory usage. 

The compiler is a one-pass compiler 
using a technique called recursive descent. 

Tandy Microsoft Level-II Basic is used 
recursively. 

The compiler has its own stacks, one 
for strings and the other for numeric 
variables. For maximum speed and mem­
ory efficiency, all numeric variables are 
declared to be of integer type. 

In effect, to compile a program, the 
compiler simply follows the syntax dia­
grams (railroad diagrams) of the language, 
deciding which route to take by looking 
at the source program text, and emitting 
object code like smoke as it goes. 

One disadvantage of the compiler is 
that it does not have the ability to recover 
and continue after an error in the source 
program. To provide this facility would 
increase the complexity of the compiler, 
and thus its memory requirement, cutting 
in to the size of the text buffer, or the 
ability to correct source program errors 

without having to load in a different pro­
gram for editing. 

2. PROGRAM VARIABLES: 

T$() 

so 
S$() 
Tl() 

T2() 

T3() 

S9 
P8 
M$ 

W0$ 

T0 

FL 

Tl 

Kl 

OF$ 

OB$ 

BZ 

N0 
Nl 
N2 
1$ 
Y9 

=Symbol Table - Identifier name 
string array 

=Stack- Compiler's number stack 
=Stack- Compiler's string stack 
=Symbol Table - A.bsolute program 
lexical level at which identifier was 
declared 
=Symbol Table- Value if constant, 
or displacement from base if var­
iable, or P-code location if process 
or function 
=Symbol Table - Array size for ar­
ray, else number of parameters for 
process or function identification 
= Numeric stack Pointer 
= string Stack Pointer 
= P-code Operator Mnemonics str­
ing values 
=People's Pascal Reserved Words 
string values 
=Maximum Number of Symbols 
(size of symbol table) checked for 
=Nested File Level for "$INCL" 
(max 1 in current version) 
=Pointer into Symbol Table Arrays 
Tl(), T2(), T3() 
=Number of Parameters in previous 
process, function 
=Object File Flag - Non-null= >ob­
ject file to be produced 
=Object File Cassette output block 
area 
=Pointer into OB$ object file block 
area 
=Number of Reserved Words in WJ:f $ 
=Maximum Value of an integer 
= Length of identifier 
=Constant string of value "!DENT" 

LN =Current Program Line Number 
L$ = Current Line of program text 
CI =Character Pointer into L$ 
X$ = Current Character of Program 

Text (also used to hold "expected" 
in error section) 

R = string Value of Next Token ex­
pected by the compiler 

E =Error Code Number 
U, V, W =P-Code Generation - Parameters 

to code-generation routine: U=op­
code, V=relative level, W=value 

0 =String Variable containing next 
program token (also used to hold 
"missing" in error section) 

ML =Maximum Program Line Number 
BL$ =Cassette Input file block area 
CM =Current Cassette I/O Mode (re-

fer.to LM) 
I,J,K =Temporary Loop and work varia­

bles 
A$ 

T 
B$ 
Z$ 
N3 

C$ 
K$ 

Y$ 

TT$ 

x 

K2 

K3 

Cl 
I1 

12 

F9 

DJ§ 
Ll 

cc 
N4 
LG 
LM 

LP 

= Next Program Text Token, return­
ed by scanner 
=ASCII Value of X$ 
=Temporary String Variable 
==Temporary String Variable 
=Value of Token for "NUM'' type 
tokens 
=Value of a String Literal 
=Symbol Table Entry Type -
C=constant, A=array, P=process, 
Y=function, V=variable 
=Temporary String Variable to hold 
parameter to be pushed onto, or 
having been popped from the string 
stack S$() 
=Temporary String Variable to hold 
symbol table entry type (refer K$) 
=Temporary Variable to hold value 
to be pushed onto or to be popped 
from number stack S() 
= Procedure or Function Call -
Number of actual parameters 
= Procedure or Function Call - In­
dex of entry in symbol table 
= P-Code Location Pointer 
=Case Statement- Number of case 
labels 
=Case statement - Number of nest­
ed case statements 
=Flag l=TO, 0=DOWNTO; also l= 
parameters, 0=o parameters 
= Pascal Stack Location Holder 
=Absolute static (lexical) level of 
procedure or function declaration 
=Next Byte of P-Code to be output 
=VARPTR of W 
=Address of OB$ (output block area) 
=Last Cassette I/Omode (refer CM) 

l= Write source file (editor) 
2= Write object file (compiler) 
3= Read source file (editor) 
4+= Read source file (compiler) 

= Line - Printer Output Flag -
!=print, 0=don1t print 

3. PROGRAM ROUTINES: 

2 - Check that current token is as re­
quired (R) and issue error message 
number (E) if not 

3 - Get next token, check that it is as 
expected and issue error message 
if not 

4 - Push X onto numeric stack 
5 - Pop X from numeric stack 
6 - Get next character of program text 

into X$ and ASCII value into T 
7 - Issue error message number (E) 
8 - Analyse expression 
9 - Code generation - output 4-byte P­

code specified by U, V, W 

10 - Get next token 
11 - Analyze a statement 

12 - Enter symbol in A$ into symbol 
table at position Tl 

13 - Generate P-code with V (level off-
set)=0 

14 - Push string in Y$ onto stack 
15 - Pop string from stack into Y$ 
16 -Analyze array index expression 
1 7 - Code Generation - generate varia­

ble-level reference portion of P­
code 

18 - Generate OPR P-code (U=l, V=0) 
19 - Generate LIT P-code (U=0, V=0) 
20 - Generate P-code with W=0 and V=J§ 
21 - Scan for start of array index ex-

pression 
22 - Scan for left parenthesis 
23 - Scan for right parenthesis 
24 - Initialise various compiler var­

iables 
25 - Start of compiler execution - INIT 
26 - Compiler mainline - compile block 

+ " . " at end, re-run program to 
clear all variables 

28 - Check that current token is as re­
quired, and emit error message 
if not 

34 - Input a new line of source code 
35 - Initialize $INCL(ude) cassette file 

input 
36 - Read line from $INCL file 
38 - Get next token from source program 

into string variable O (no dollar ($) 
for brevity since this is so comm.on) 

69 - Search symbol table for identifier 
70 - Analyze constant (CONST) declara­

tion 
71 - Obtain value of constant 
76 -Analyze single VAR(iable) declar-

ation 
77 - Analyze simple expression 
83 - Analyze term 
88 - Analyze factor 
103 -Analyze expression 
111 - Analyze statement 
113 - Analyze variable assignment (A:=B) 
119 - Analyze write statement 
124 - Analyze read statement 
138 - Analyze IF statement 
140 - Analyze compound statement 
141 - Analyze compound statement (BE-

GIN ••• END) 
143 -Analyze repeat statement 
145 - Analyze WHILE statement 
146 -Analyze CASE statement 
155 - Analyze FOR statement 
159 - Analyze block 
162 -Analyze CONST declaration 
164 - Analyze CONST declaration 
16 7 - Analyze ARRAY declaration 
1 70 - Analyze PROC declaration 
1 71 - Analyze FUNC declaration 
177 - Analyze BEGIN 
18.1 -Code Generation - Output 4-byte 

P-code to object file 
187 - Output "Fix up forward reference" 

pseudo. J?-code to object file a:nd 
display • · · 

188 - Output 1 byte of P-code in CC to 
cassette output block 

189 - Output block of object .code in OB$ 
to cassette and reinitialize OB$ 

NOTES: 
Every attempt has been made to reduce 

to minimum the size of the compiler. 
This is the reason for the "jump table" 

at the front of the program. These short 
line. numbers are used frequently and take 
less space. 

Whenever a subroutine ends with GOSUB 
XXXX: RETURN, this code has been re­
placed with GOTO XXXX, which is fun­
ctionally equivalent, takes less space, 
but tends to make the program messy to 
read. However, these occurrences are 
recognizable, with a bit of practice. 

The construct RETURNELSERETURN 
has been used at the end of IF statement 
lines to avoid the memory overload of 
usinganother program line. 

Some IF statements involving the com­
parison of quoted logical operators, etc., 
have caused Level-II Basic a few head­
aches' and will not work without embedded 
spaces. 

The current version of the compiler is 
combined with the editor program, but 
these two programs .are relatively sep­
arate, only sharing certain initialization 
code, and the routines for finding the next 
line in the text buffer and copying that 
line into LN,L$. The cassette source read 
routine is also shared together with the 
line unpack routine. 

CONVERSION TO DISK: 
The following tasks would be required/ 

desirable: 
1. - Separate editor and compiler into 

two separate programs. 
2. -Add disk file access capability for 

editor, compiler, translator and in­
terpreter, for both source and P­
code object files. 

3. Add capability to write translated 
Z-80 object code files to disk either 
as a translator facility, or as an 
extra program or as an option of 
the run-time system. 

4. - Allow greater depth of nesting of 
"$INCL" (ude)s. 

5. -Alter emphasis in compiler from 
minimum memory requirement to 
higher speed. 

CONVERSION 
FOR ADDITIONAL MEMORY: 

The initialization of TA (to:e address) 



would need to be altered from 32767. 
Care would be required with address 

calculation in integer mode when handling 
addresses over 32767. It might be nec­
essary to use floating-point data types 
for such variables. 

If the text buffer were to be signif­
icantly enlarged it would be desirable to 
use a machine-language routine to re.­
place the Basic routine used to position 
pointer Pa at the address of the line in 
the text buffer with a giv.en line number. 

This simple function could be easily 
implemented and would eliminate any 
apparent delay in most commands. 

P C 0 DE 
INT1RPRETER 

TPRINT 
PROGRAM DOCUMENTATION 

1) INTRODUCTION: 
The People's Pascal P-code interpreter 

(PPINT) executes Pascal object code 
(P-code) output from the People's Pascal 
Compiler. The P-code cassette file out­
put from the compiler is read into mem­
ory and then interpreted under operator 
control. The program currently is written 
in Level-II Basic. 

2) PROGRAM VARIABLES: 
SZ -Size of stack array for program 

to be interpreted. 
Sl -Size of stack at which overflow 

message is emitted. A little less 
than SZ. 

S() -Stack array. 
M$ -Holds P-code instruction mnem­

onics. 
PS -P-code start address. 
PP -P-code pointer-points to current 

P-code d1.1.ring read-in from cas­
sette. 

Z$ -Temporary string variable. 
Pl '."'First byte of 4-byte P-code. 
P2 -Second byte of P-code. 
P3 -Third byte of P-code. 
P4 -Fourth byte of P-code. 
U -Size of trace array. 
BL -Maximum number of breakpoints 

allowed. 
TR() -Trace array stores last few P­

codes executed. 
BR() - Breakpoint array stores breakpoint 

locations. 
BA -Copy of base for Level L. 
B -Bas.e register of current·•,stack 

frame holds address of base of 
stack frame of current block. 

L - Level offset. 
A -P-code second (16-bit) operand. 
z 
T -stack pointer. 
P -Program counter (holds P-code lo-

cations). 
ST -stop execution flag, ~=OK, l=stop. 
P~ - P-code location display pointer. 
TP -Trace array pointer (circulates 

K 

around TR() trace array as in­
structions are executed and stored 
in TR(). 

X -P-code address in memory. 
NI -16-bit operand. 
F -P-code op code. 
IX -LODX, STOX indexing flag, O=not,. 

1 =indexing. 
SA -Top of stack 16-bit WO!'d. 
SB -Top-1 of stack 16-bit word. 
Ml -Temporary variable. 
H -Parameter for hex input/output, 
PC -Parameter for hex, 
PC -P-code location parameter. 
N ,.. Pointer parameter into M$. 
I ·-Temporary variable. 
J •Temporary variable. 
BP -Number of breakpoints currently 

set. 
CM$ -Command mnemonic string. 
IB$ -Input data block from cassette file. 
IP -Pointer to next byte in IB$ input 

block area. 
Z9$ -string to hold Z-80 machine code 

routine to read in a block of data 
from P-code input file. 

LN -Length of input block IB$ in char-
acters. 

Z Z -Temporary variable, 

3) PROGRAM ROUTINES: 
100 -h11tialization. 
1000 -Initialization - parameter input. 
101S -Cassette file read-in to memory. 

Forward reference fix-ups output 
to the P-code object file are fixed 
up in memory as they are encoun­
tered. Pseudo-P-codes 25S and 254 
are used to· label these items. 
Pseudo P-code 255 is used as an 
end-of-program indicator. 

9900 -Initialization. 
20040 -Routine to bind the base address 

corresponding to a given level off- · 
set. 

20060 -P-code program initialization. 
20090-"Execute P-code instruction" 

routine. Ends at line 20680. 
20120-P-code or op-code branch out de­

pending on value of op-code. 
20140 -LIT- Execute literal instruction. 

20150-0PR- Execute OPR instruction. 
20520 - LOD- Execute load instruction. 
205SO-STO- Execute store instruction. 
20540-CAL-Execute call instruction. 

Note: j.f it is an absolute call, and 
the address is that of the graphics 
"SET' routine, then a SET/RESET 
will be performed instead of a call. 

20550-INT- Execute increment-stack 
pointer instruction. 

20560 -JMP- Execute JUMP instruction. 
20570 -JPC - Execute conditional jump in­

struction. 
20580-CSP- Perform CSP function. 
20690-Get 2nd P-code instruction operand 

(16-bit). 
20710-Display P-code instruction at lo­

cation PC. 
20760-Check if a breakpoint has been 

encountered. 
20820 -MAINLINE- Accept and execute 

operator commands. 
208SO-lnput command and execute it. 
20840-20970 Command interpreter. 
30010-Get next P-code from cassette 

file. 
S0070-Z-80 machine language routine to 

read-in a block of data from cas­
sette input file. Level-II Basic I/O 
is bypassed to avoid records being 
truncated if certain values [e.g. 
(" ) l occur in data. 

SOOSO-Routine to read Z-SO routine into 
Z9$. 

SOlOO-Fix up forward reference item en­
countered on cassette input file. 

S0210-Routine to execute macIUne lan­
guage subroutine in Z9$ which 
reads a block of data into the 
Level-II Basic 256-character I/O 
buffer at address 16S70, and to 
copy this data into block area IB$. 

SOSOO-Routine to call an assembly-lan­
guage subroutine whose address is 
on top of the Pascal stack, tµl].ess 
the address is that of the .~aphics 
"SET" routine, in which''case, a 
Level-II Basic SET/RESET in.;. 
struction is . performed instead. 

P-TO-Z80CODE 
TRANSLATER 

PTRANS 
PROGRAM DOCUMENTATION 

1) INTRODUCTION: 
The P-code-to-.ZSOcode t1'anslaoorpre­

gram (PPTRANS) translates a P-code 
program into a Z-SO-microprocessor 
machine-language program. The P-code 
program is input from a P-code object 
cassette file generated as output by the 
People's Pascal compiler. 

A People's Pascal program, when trans­
lated to Z-80 machine language, will typic­
ally run about five times faster than an 
equivalent Level-II Basic program. The 

The following People's Pascal state­
ments execute in about 5 seconds: 

FOR I:=O TO 127 DO BEGIN 
FOR J:=O TO 47 DO BEGIN 

SET(ON,l,J); 
END; (*FOR*) 

END; (*FOR*) 
Whearas the equivalent Level-II Basic 
statements: 
FOR 1=0 TO 127: FOR J=O TO 47: SET 
(l,J): NEXT J: NEXT I 
take about 42.5 seconds. 

2) DESCRIPTION: 
The following actions are performed: 
1) Initialization - Translation para­
meters are prompted for and saved, then 
initialization code is deleted and the pro­
gram run again. Note: a "CSAVE" after 
running the program will not produce a 
viable copy: 
2) P-codes are read.:in from cassette 
and stored in memory normally starting 
at address 24000. Forward reference fix­
ups generated by the one-pass Pascal 
compiler are fixed up as they are en­
countered in the cassette file. These for­
ward reference fixups (''add X at Y") 
are stored as pseudo P-codes in the 
P-code cassette file using op-codes 253 
and 254, 
S) Pass-1: establish table of P".'codejump 
or call destination locations by looking for 
JMP, JPC and CAL op-codes; remove 
duplicates and sort table into ascending 
P-code location sequence (= ascending 
z-so address sequence). 
4) Pass-2: generate Z-SO addresses cor­
responding to P-code locations in table by 
translating P-code to Z-SO code and ob­
taining the length of each z-so code. 
5) Pass-S: generate Z-80 codes, includ­
ing correct addresses from table; store 
in memory normally starting,' at address 
2SOOO, and list-out P-codes with equivalent 
Z-SO codes in hex and addresses in deci­
mal and hex. 

3) PROGRAM VARIABLES: 
DI =Display flag: O=don't display object 

code, l=do. 
LP =Print flag: O=don't print object code, 

l=do. 

OP =Optimization flag: O=optimization 
for speed,. l=minimum memoryuse. 

PA =P-code address table - array. 
ZA =Z-SO code address table- array. 
JT =Run-time system jump-table add-

ress. 
CO$ =P-code op-code mnemonics, stored 

in string. 
PS =P-code storage start address. 
ZS =Z-SO code storage start address. 
PP =Current P-code pointer. 
ZP =Current Z-SO-code pointer. 
ZZ$ =Temporary string variable. 
Pl =Value offirst byte of current P-c<;>de. 
P2 =Value of second byte of current 

P-code. 
PS =Value of third byte of current P­

code, 
P4 =Value of fourth byte of current P­

code. 
P5 =Value of third and fourth bytes of 

current P-code taken as a 16-bit 
integer. 

Z8$ =storage area for bytes of current ' 
Z-80 code .(the Z-SO instruction's 
equivalent to the current P-code), 

A$ =Temporary string variable. 
PC =Current P-code pointer. 
I =Temporary loop· variable. 
J =Temporary loop variable. 
AN =Actual number of addresses in ad-

dress table. 
K =Temporary variable. 
Nf =Temporary variable. 
CL =Current Z-SO 'code length in bytes, 
AP =Index into address tables PA and 

ZA. 
x :;P-code indexed LQD/STO operation 

(LODX/STOX) flag. Also work var­
iable in initialization. 

LT$ =P-code literal string accumulation 
area for CSP S. 

XX =Pointer to address within jump table. 
RT =Run-time system routine number. 
XL =Low byte of XX (also temporary 

variable). 
XH =High byte of XX (also temporary 

variable), 
P6 =-2*P5. 
P7 =Low byte of P6. 
PS =High byte of P6. 
HX$ =Holds two-character hex string 

equivalent to one binary byte. 
IX =Index into P-code address table. 
BY =Byte to be converted to hex. 
BH =Four-bit "nibble" of BY. 
HB =Hex base, =11j 11 or "A". 
HX =Four-bit nibble to be converted to 

hex character. 
Z9$ =string to hold z-so read-cassette 

machine language routine required 
to bypass Level-II Basic !nput rou ... 
tine. 

LN =Length of block read from cassette 
. ~.,. •. , (.P-gqg.e ~J>Ht file)"' . . 
IB$ =Area to hold, P-cOde block read 

from oassette. 

4) PROGRAM ROUTINES: 
1-25 =Initialization - input parameters. 
27 =Prompt for number showing de-

fault value. Accept reply and save it. 
29 =Save a value in high memory. 
31-35 Read-in P-code cassette file. 
S7 =Append "Push HL" ZSO-code onto 

ZS$. 
39 =Restore a value from high memory 

after "run". 
41 = Further initialization, mainline. 
45 =Pass 1, mainline, 
47 =Pass 2, mainline. 
49 =Pass S, mainline. 
5S = Termination, mainline. 
59 =Scan P-codes in memory for P­

code jump destinations and store 
these in P-code location table. 

69 =Bubble sort P-code location table. 
7S =Obtain current P-code into Pl, P2, 

PS, P4, P5. . 
77 =Calculate P5 from PS, P4. 
79 =Display current P-code on screen. 
S5 =Pass-2: Calculate zso addresses 

corresponding to P-code locations 
and store in ZA. 

97 =Pass-S: Generate, display andstore 
ZSO codes. 

lOS. =Display current ZSO code on screen. 
105 =Generate Z80 code corresponding 

to current P-code, 
llS =Translate LIT P-code to Z80 code. 
115 = Translate OPR P-code to Z80 code. 
125 =Translate LOD P-code. 
1S5 =Translate STO P-code. 
14S =Translate CAL P-code. 
149 =Translate JMP P-code. 
159 =Translate JPC P-code. 
165 =Translate CSP P-code. 
1 7S =Convert XX to XL and XH low and 

high bytes. 
175 =Append A "CALL XX'' ZSO code 

to ZS$. 
177 =.Put a "LD HL,[P6}" ZSO code into 

ZS$. 
181 =Put a "LD HL, [P5]" ZSO code into 

ZS$. 
1S3 =Put a "LD L, (IX+ [P7]) 

LD H, (IX + [P7 + l]) 
PUSH HL" ZSO code into ZS$ 

185 =Put a "POP HL 
LD (IX+[P7]), L 
LD (IX+[P7+1]),H'' code into 
Z8$. 

1S7 =Calculate P7 from P5. 
1S9 =Append a "LD A, [P2)" ZSO code 

into ZS$. 
191 =Append a "JP XX'' ZSO code to Z8$. 
19S =Find ZSO address in table ZA 

correspori.ding to P-code location 

TRS-SO COMPUTING 1:4 PAGE 11 

held in P5 by looking up this P-code 
location in table PA (linear search). 

195 =Look up P-code location held in P5 
in table PA. 

199 = Display ZSO code in Z8$ in hex plus 
current ZSO address in decimal and 
hex and store ZSO code in memory 
at current ZSO address. 

209 =Convert binary byte in BY to two 
hex characters in HX$. 

211 =Convert 4-bit nibble in HX to hex 
character and append to HX$. 

215 =Store a 4-byte P-code at the cur­
rent P-code location. 

21 7 =Display the contents of the PA and 
ZA tables. 

219 =Get next P-code from cassette in 
Pl, P2, PS, P4. 

2Sl = ZSO machine language routine to 
read a block of P-codes from the 
cassette input file into the Level-II 
Basic I/ O buffer area. 

2S3 =Routine to read ZSO machine lan­
guage routine into Z9$. 

2S7 =Routine to apply forward reference 
fixup "pseudo-P-codes" (op-codes 
25S & 254) to P-code in memory 
as these are encountered on the 
P-code cassette input file. 

2S9 =Routine to execute the Z80 machine 
language cassette-read routine held 
in Z9$ with the USR,{ff) function, .and 
transfer the data read into the string 
area IB$. 

5) Z80 CODES GENERATED 
FOR EACH P-CODE: 

(Note: IX register is used for Pascal cur­
rent stack (B) base register, SP~ used 
for stack pointer (T), HL is used for 
argument register, A is used to hold 
level offset). · 

5. 1) OPTIMIZING FOR SPEED: 
MNEMONIC OPERATION Z80-Code 
LIT ~.NN load.literal onto LD HL,NN 

OPR2 

OPR19 

OPR20 

OPR21 

OPRN 

LOD~,N 

LOD~,NN 

LOD L,M 

LODX,j,M 

LODX L,M 

STOj,N 

stack PUSH HL 
add operation POP DE 

POPHL 

increment 
operation 

decrement 
operation 

ADD H,DE 
PUSHHL 
POPHL 
INC HL 
PUSH HL 
POPHL 
DECHL 
PUSHHL 

copy top of stack· POP HL 
PUSH HL 
PUSH HL 

arithmetic or CALL 
logical operation OPRN 
lbad variable LD L, 
onto stack (IX+[ .. N*2l) 
(-64 < N < 64) LD H, 

load variable 
onto stack 
load Level L 
variable 
onto stack 
load current 
level indexed 
(array) variable 
onto stack 
load Level L in­
dexed variable 
onto stack 
store current 
level variable 
from top of 
stack 
E-64 < N < 64) 

(IX+[-N*2+1]) 
PUSH HL 
LDHL,NN 
CALL LOD 
LOD HL,NN 
LDA,L 
CALL LODl 
LDHL,M 
CALL LODX 

LDA, L 
CALL LODXl 

POPHL 
LD (IX+ 

[-N*2]),L 
LD (IX+ 

[-N*2+1]),H 

STO j,NN store current LD HL,NN 
level variable CALL STO 
from top of stack 

STOL,M store Level L LD HL,NN 
variable from LD A,L 
top of stack CALL STOl 

STOX-,M store current LD HL,M 
level indexed CALL STOX 
(array) variable 
from top of stack 

STOX L,M store Level L LD HL,M 
indexed variable LD A,L 
from top of stack CALL STOXl 

CALL -.M call procedure or CALL CAL 
function at JP 
P-code loc.M [ZSOADRJ 

CALL L,M call procedure LD A,L 
or function de- CALL CALl 
clared at JP 
Level L [Z80ADR} 

CALL 255,~ call machine lan- CALL CALA 

JMP 0,M 

JPC ~.M 

JPC l,M 

CSP 0,N 

INT-1 
INT-2 

INT-S 
INT 1 

INT 2 

guage subroutine 
jump to P-code JP 
location M [ ZSOADR} 
jump if condit- POP AF 
ion false to P- JNC 
code location M [ ZSOADRJ 
jump if condition POP AF 
true to p-code JC 
location M [ ZSOADR] 
call standard . CALL CSPN 
procedure num-
ber N 
adjust stack 

pointer 
POP BC 
POP BC, 
POP BC 
SXPOPBC 
DEC SP, 
DEC SP 
4XDECSP 



-

PAGE 12 TRS-80 COMPUTING 1:4 

INT M LD HL, 
[-M*2] 
ADD HL,SP 
LD SP,HL 

5. 2) OPTIMIZING FOR 
MINIMUM MEMORY USE: 

The same code as above is produced 
except as follows: 
mnemonic operation 
LIT ~.N load small pos­

itive 
1 ~ < =N < 256) literal onto 

stack 
LOD ~.N load variable 
(-64<N<64) with small off­

STO~,N 
set at this level 
store variable 
with small off-

(-64<N <64) small offset at 
this level 

LOD 1,N 'store variable 
~( =N<128) with small pos-

itive offset at 
one level higher 

Z80 code 
RST 4;RE­
START 4 
DEFB N 

RST5; 
RESTART 5 
DEFB-2*N 
RST 6; 
RESTART6 
DEFB-2*N 

RST 7; 
RESTART 7 
DEFB-2*N 

STO 1,N store variable RST 1; 
with small pos- RESTART 1 

_ itive offset at one DEFB-2*N 
level higher 

NOTE: In order to make the best use of 
the minimum-memory option, the pro­
grammer may use the following tech­
niques: 
1) I>o not· declare procedures within pro­
cedures. All procedures should be de­
clared at the outermost block level. (This 
rule will also make programs run slight­
ly faster, and is quite sensible from a 
human point of view, as well as being 
compatible with the single level of the 
$INCL compiler option. Usually there is 
no need to declare procedures and fun­
ctions at any other than the outermost 
block level. 
2) Declare all single variables before 
decla,d:ng any array variables. This will 
gen~y ensure that all variables have 
an ~t of less than 64 stack locations 
from the base and therefore allow the 
tran~tor to make use of the "small" op­
tion.'<iill'he size of the offset of array var­
iabl6$"(<loeS not matter. 

PR(i)GRAM DOCUMENTATION 

RUM~ TIME SY STEM 
1) INT.RODUCTION~ 

. -i~l?~le's P~cal run-time-system 
prmiides subroutines which are_called by 
translated People's Pascal programs. 

Subroutines are provided for such fun­
ctions -as multiply and divide, keyboard 
input, etc. , 

Code for these functions could be in­
serted "in-line" into the program by the 
translator, but then People's Pascal pro­
grams would be very large. In general, 
the factor which decides whether a given 
function should be performed in-line or 
as a subroutine, is the size of the code 
required to perform the function. The 
larger the code is, the more economical 
it is to have only one copy of it as a sub­
routine, and the less the proportional 
overhead in execution time of the actual 
subroutine call and return instructions 
against the code executed to perform the 
function. 

The run-time system is entirely self 
contained apart from two Level-II Basic 
routines which are used to input a char­
acter from the keyboard and to output a 
character to -the screen. To convert to 
computer such as the Sorcerer, it should 
orily be necessary to provide the equi­
valent of these two routines. 

As well as providing subroutines, the 
run-time $ystem is entered initially when 
a Pedple's Pascal program is run. Cer­
tain initialization functions are performed 
before c.ontrol is passed to the program. 

2) THE JUMP TABLE: 
Most subroutines within the run-time 

system are accessed via a jump table in­
cluded in the run-time system. 

This allows modification of subroutine 
locations within the system without modi­
fying the addresses of the subroutine entry 
points. 

This also allows modifications to the 
run-time system without modifying the 
translator program or previously-trans­
lated programs, providing of course that 
the jump table itself is not moved. Also, 
subroutine entry points within the jump 
table are at a constant offset from the 
starting address of the jump table. Thus 
if ever the jump table is moved, (re­
assembled with a different origin), then 
the only parameter to be changed in the 
translatOr is the address of the start of 
the jump table (JMPTAB). 

3) RESTART (RST) 
INSTRUCTIONS: 

An exception to the use of the jump 
table is the use of RST instructions in _ 
People's Pascal programs that have been 
translated with the minimum-memory 

usage optimization option. For certain 
common functions, the restart (RST) in­
structions (1-byte subroutine calls to 
fixed low-memory addresses) are used, 
as follows: 
LIT 0,N O<=N<256 RST 4, DEFB N . 
LOO O,N -64<N<64 RST 5, DEFB -2*N 
STO 0, N -64<N< 64 RSR 6, DEFB -2*N 
LOO 1,N O<=N<128 RST 7, DEFB -2*N 
STO 1,N O<=N<128 RST 1, DEFB -2*N 

Use of the RST instructions is made 
possible by the flexible approach taken by 
Microsoft in designing Level-II Basic. 

RST instructions jump to low memory 
(ROM) addresses, but at these locations, 
Microsoft has put jump instructions out 
into RAM locations 4000 hex onwards for 
RST 1 to RST 7 (RST 0 is not used in 
this way). These locations at 4000 hexare 
set to jump back into ROM, or perform 
other functions when the memory size 
question is answered. 

On initialization, the People's Pascal 
run-time system overwrites these loca­
tions at 4000 hex with the addresses of 
the relevant subroutines itself. These ad­
dresses are restored when the Level-II 
keyboard/ screen I/ O routines are called. 
This feature is not used by programs op­
timized for speed. 

4) PROGRAM VARIABLES 
AND CONSTANTS: 

STK - stack location used by PP RUN 
during initialization. 

CR - Carriage return code. 
KBUFL-Number of characters in -key­

board buffer. 
KBUFP-Pointer to next character in key­

board buffer. 
KBUF -Keyboard buffer area (max 64 

characters). 
RST - Area containing restart table over­

write data. This is copied to 4000 
hex on initialization and after key­
board l/O. 

NORST-Area containing copy of Level-II 
Basic version of restart table. 
This is copied · to 4000 hex on 
keyboard l/O. 

Kl~ - Table of powers-of-ten for binary 
to decimal conversion for CSP3 
(write#). 

5) REGISTER USAGE: 
SP - Used for People's Pascal stack 

pointer (T). It is also used for 
subroutine return linkage. 

HL - Generally used as an argument 
register. It is used in code called 
by RST instructions to hold ad­
dresses of trailing arguments. 

DE - General purpose. 
BC - General purpose. 
A - Used to htlld relat:i'i.re level offset 

when not J.; Al&O general purpose . 
IX .- Used ·for PedJ;,Ie's Pascal base 

register (B). 
IY - Frequently used to save subroutine 

return address popped from stack 
at start ·of subroutine and jumped 
to at end. 

Alternate register set-Used in CSPl only. 

6) PROGRAM ROUTINES: 
START-Normal initialization entry point. 
INAD - Alternate entry point - allows 

override of stack address and entry 
of non-standard program start ad­
dress. 

DORST-Overwrites Level-II Basic re­
start table at 4000 hex. 

UNDO-Overwrites 4000 hex with original 
Level-II contents. Note NORST 
must be in HL. 

LITB - Small literal- only for minimum­
memory translation option. 

CALA-Absolute memory address call 
(CALL(MEM)). Note IX register 
is saved. Any other register can 
be overwritten, so programmer 
does not need to worry about 
destroying register values in his 
subroutine. 

CALl-Call procedure at non-zero level 
offset. 

CAL - Call procedure at ~ level offset 
(CAL 0,N). 

OPruf-Subroutine return. 
OPRl-Negate top of stack (TOS). 
OPR2-Add-not currently used-in line 

instead. 
OPR3 -Subtract. 
OPR4-16-bit signed multiply. 
OPR5-16-Bit signed divide. 
OPR6-Test TOS for odd value. 
OPR7-MOD (uses divide, multiply and 

subtract). 
OPR8 -Compare equal. 
OPR9-Compare not equal. 
OPRlO-Compare less-than. 
OPRll -Compare greater-than or equal. 
OPR12 -Compare greater than. 
OPR13 Compare less-than or equal. 
OPR14-0R operation. 
OPR15-AND operation. 
OPR16-NOT operation. 
OPRl 7 -Shift left operation. 
OPR18 -Shift right operation. 
OPR21-Not used- in line instead. 
KBIN - Routine to input a line of char­

acters from the keyboard, echoing 
them to the screen and allowing 
the delete key to operate if re­
quired. 

CSi>0-Input a character. Calls KBIN to 
get next character otit of input 
line. 

CSPl-Output a character. Also resets 
KBIN input line pointer and length 
to zero so next call to CSP~ will 
cause a new read. 

CSP2-Read a number. Calls KBIN to get 
characters of number. Number is 
terminated by first non-digit char­
acter. 

CSP3 -Write a number. 
CSP8-0utput a string of characters. These 

are supplied in form of a trail­
ing argument terminated by a null 
~) byte. Also clears KBIN input 
line length and pointer, so next 
read will cause true input to be 
done. 

MB - Unsigned 16-bit-by-8-bitmultiply. 
NEGHL-Negate the HL register (internal 

subroutine only). 
LODA-Load from absolute memory ad­

dress (:=MEM(X)). 
LODlB-Load from small offset at pre­

vious level (small option only). 
LODl -Load, level<>~. 
LODB-Load from small offset at cur-

rent level (small option only). 
LOD - Load, Level=~. 
LODXl-Indexed (array) load, level <>~. 
LODX-Indexed load, level~. 
BASE - Find base register value corres­

ponding to level offset supplied in 

A register and return base value in 
BC register. 

STOlB-store to small offset, Level=l 
(small option only). 

STOl-store, level<> 0. 
STOB-store to small offset, level =0. 
STO - store, Level ~. 
STOXl-store indexed (array), level<> 0. 
STOX-Store indexed, level~. 
JMPTAB-Jump table. 

7) SPECIAL SUBROUTINES: 
The following two subroutines are used 

in the Level-II Basic ROM: 
!1033 hex - Output character in A-regis­

ter to screen. 
0~2B hex -Try for character from key­

board. A-register will have 
character if there was one, 
otherwise A-register will be 
·zero. This is called in a loop 
until A<>~. 

These are the only external facilities 
used by the run,..time system, and equiv­
alent routines would need to be supplied 
in their stead for a different micro sys­
tem. Also, some modification wouldprob­
ably need to be made to the restart sys­
tem for minimum-memory optimization if 
this feature was to be retained under a 
different system. 

PROGRAMING IN PASCAL 
CONTINUED FROM PAGE (6) 

TYPE LETTER= A .•. Z; 
TYPE WINTERTERM = JAN ••• MAR; 
VAR SCORE:O ••• 100; 

ARRAY TYPES: 
TYPE typename. =ARRAY [index-type] 

OF element-type; 
VAR varname-list : ARRAY[indextype] 

OF element-type; 
Examples: 
TYPE COEFFICIENTS =ARRAY [O ••• 4] 

OF REAL; 
VAR SAMPLELIST = ARRAY[O ••• 100] 

OF REAL; 
Note: INTEGER and REAL are not per­

mitted as index types. 
Multidimensional arrays are defined by 

specifying multiple index-types. 
TYPE typename = ARRAY[index-type, 

index-type, ••• ] OF element-type; 
Examples: 
TYPE SIMLINEQS &ARRAY[O ••. 5,0 ••• 6] 

OF REAL; 
VAR FOURSPACE : ARRAY[O ••• 10,0 ••• 

10,0 ••• 10,0 ••• 10] OF INTEGER; 
VAR NAMEUST : ARRAY]l ••. 100,1 •.• 

30] Ol? CHAR; 
Packed arrays are almost identical to 

normal arrays, except that by declaring 
an array to be packed, it may be possible 
to reduce the size of the m•91llory space 
use,d by it; 

The amount of reduction depends upon 
the machine and the implementation, and 
may in fact be nil. 

This may also reduce the running speed 
of the program. 

TYPE typename = PACKED ARRAY 
[index-type-list] OF element-type; 

VAR varname-list =PACKED ARRAY 
[index-type-list] OF element-type; 

Example: 
VAR FOURSPACE : PACKED ARRAY 

[0 ••• 10,0 ••• 10,0 ••• 10,0 ••• 10] OF 
INTEGER; 

Elements in arrays are referenced by 
placing the index expression(s) between 
square brackets associated with the array 
name. (Since TRS-80 does not have square 
brackets, Pipe Dream Software utilized 
the A and A signs. Ed) 

array-name[ index-expression-list] 
(or in People's Pascal: array-name 
(index-expression-listA) 

Examples: 
A[l,5] FOURSPACE[X,Y,Z,T] LIST[N+l] 
or in Peiple's Pascal: 
A.{l,5J FOURSPACE(X,Y,Z,Tf LIST 

/(N+IY 

CONCLUSION: 
Pascal is a relatively new and powerful 

general-purpose programming language. 
It is also one of the first languages to 
employ many of the principles of struc­
tured programming. 

As a result of this, programs written 
in Pascal are usually more straightfor­
ward and considerably more readable 
than those written in most other contem­
porary languages. 

Since its introduction, Pascal has seen 
an amazing rise in popularity throughout 
the world. This fact is well evidenced by 
the number of colleges and universUies 
whose comput<?r science departments in· 
the past few years have switched their 
emphasis from Fortran or Basic to Pas­
cal. 

Educators are discovering that Pascal 
is an excellent introductory language, 
since it is not only easy to learn, hut 
also teaches good programming h::.oits 
right from the beginning. 

Pascal is certainly not the utopia of 
programming . languages - it is far 
from perfect. However, it provides a sign­
ificant improvement, in general purpose 
computing, over most of those older 

languages li~ted ear lier, thus it would 
seem to be the next logical rung on an 
endless ladder reaching towards aperfect 
language. 

REFERENCES: 
Kathleen Jensen and Niklaus Wirth, "Pas• 
cal User Manual and Report", New York: 

G. Michael Schneider, Steven W. Weingart, 
and David M. Perlman, "An Introduction 
to Programming and Problem Solving with 
Pascal", New York: John Wiley + Sons, 
1977. 

Anthony Ralston (ed.), and Chester L. 
Meek (asst. ed.), "Encyclopedia of Com­
puter Science," New York: Petrocelli/ 
Charter, 1976. 

Andy Mikel· (ed.), "Pascal News" #9/10, 
Minneapolis, MN: Pascal User's Group, 
1977. 

Richard Conway, David Gries, and E. C. 
Zimmerman, "A Primer on Pascal", Cam­
bridge, :MA: Winthrop, 1976. 

Kenneth L. Bowles, "Problem Solving 
Using Pascal", New York: Springer­
Verlag, 1977. 

APPENDIX: 
PASCAL USER'S GROUP 

The Pascal User's Group is in its third 
ye.ar (4th now-ED), and already boasts a 
world-wide membership with branch of­
fices in Europe and Australia. 

The gr_oup is based at the University of 
Minnesota, under the direction of Andy 
Mickel. 

The main function of the User's Group 
is to promote the use of Pascal, by pro­
viding an open forum for members, in the 
form of the quarterly-publiShed "Pascal 
News". The content of Pascal News is 
d;etermined by the motto "All the news 
that fits, we print." 

Mem'Qership/ subscription dUes are $12 
per academic year. To join, or get more 
information, it's best to just join, and then 
send in a letter for publication) write to: 

Pascal User's Group, c/ o Andy Mickel 
University Computer Center: 227 EX 
208 SE Union st. 
University of Minnesota 
Minneapolis MN 55455 

When joining, send along your $12, your 
name, address, phone number, type(s) of 
computers you are using (especially if ' 
one or more has a Pascal unplementation), 
and be sure to date your letter. 

Or, if you know someone who already 
gets Pascal' News, just copy the all­
purpose coupon from one of the issues, 
and send that in. 

SYSTEM RESALE 
NOT ALLOWED 

Sale of CIE People's Pascal I or II does not 
include permission to resell the rW1-tlme sys­
tems, Only Pipe Dream Software and Super­
Soft can license commercial users to distribute 
the rWl-time systems with their People's Pas­
cal object programs, 

Writing programs in People's Pascal I or II 
is a good idea, since the object programs re­
quire less memory and rW! five to eight-times 
faster than Basic programs. 

People wishing to sell programs written on 
the People's Pascal development systems, how­
ever, should enquire about run-time-system 
licensing from Pipe Dream Software (Tape 3), 
or SuperSoft ('rape 6), 

Addresses are: 
PIPE DREAM SOFTWARE 
28 Palmerston st, 
Berwick, Victoria 3806 
Australia 

SUPE:t<;OFT 
Box 1628 
Champaign IL 61820 



EDITOR/ COMPILER 
OP ER ATING INSTRUCTIONS 

1. INTRODUCTION: 
The People's Pascal editor is a line­

oriented editor. Edit commands operate 
on l ines of text in a text buffer, which has 
room for just over 3,000 characters or 
50-200 lines of text, depending on line 
length. Intra-line editing is not provided. 

Lines of text in. the text buffer may be: 
• inserted from keyboard or cassette 

files, 
• replaced from keyed-in or tape files, 
• deleted, 
• renumbered, 
• written to a cassette file, 
• listed on the screen, 
• printed on the lineprinter, 
• compiled. 

Files of any lengtJl may be created or 
edited. PPEC files are not loadable via 
the "C LOAD" command or the"SYSTEM" 
command, nor are they compatible with 
the Tandy editor/assembler. However, 
they may easily be r ead by a Level-II 
Basic program. PPEC cassette files are 
blocked for efficiency. 

2. LINE NUMBERS: 
In the line-oriented PP editor, lines of 

text are identified by line numbers. Lines 
always occur in line-number sequence 
both in the text buffer and in cassette 
files. Line numbers may range from 1 
to 32, 766. 

Many of the editor commands operate 
on. text lines having line numbers falling 
Within a line number range. A line num­
ber r ange is expressed as a starting line 
number followed by a single dash (i.e. 
" - ") character, followed by a final line 
number (e.g. 500-1000 ). 

The following variations of this form are 
allowed: 

A. No final line number, (e.g. 500). In 
this case, the final line number will de­
fault to the value of the starting line 
number, and the command will operate 
on that line only. 

B. No starting or final line number. 
In this case, the starting line number will 
default to 1, the final line number will 
default to the · highest line number allowed 
(32, 76 6), and the command will operate 
on all lines in the text buffer. 

C. Starting line number replaced by a 
full StOp (full point Or II· ") Character, 
(e.g. -500). In this case, the starting line 
number will take the value of the current 
line number, and the command will operate 
from the current line to the final line 
number. 

D. Missing final line number, but . a 
dash character present (e.g. 100- or .-). 
In this case the final line number will 
default to the largest line number allow­
ed, and the command will operate on 
lines from the starting line number to the 
end of the buffer. 

3. COMMANDS: 
People's Pascal editor commands con­

sist of a single letter, possibly followed 
by a line number range or other numeric 
argument. 
The folloWing commands are accepted: 

C- COMPILE- Compile People's Pas­
cal progra.rri in the text buffer. 

D-DELETE-Delete line(s) from the 
text buffer. · 

E - EOF- Write an end-of-file mark 
to the output-cassette file. 

F- FREE - Enquire how many bytes 
"free" (available) in the text buffer. 

L- LIST- List line(s) in the text buf­
fer on the screen. 

N- NUMBER- Re-number lines in the 
text buffer. 

P - PRINT- Print lin (s) in the text buf­
fer on the line printer. 

R- READ- Read block(s) from the in­
put cassette file, and insert or re­
place lines in the text buffer. 

W-WRITE-Write line(s)fromthetext 
buffer to the output cassette file. 

Commands must be typed precisely. Lead­
ing spaces are not allowed. Embedded 
spaces are not allowed between command 
mnemonics C'C", "D", "E", etc.) and the 

· numeric arguments. An unrecognized 
command will cause a "??" message from 
the editor. 
4. INSERTING AND 

REPLACING LINES: 
NOTE : The current version of the editor 
requir es that any ·lines containing the 
characters "," or":" be preceded by the 
quote sign C') , otherwise the Level-II 
Basic I/ 0 will truncate the line at the 
comma or colon, and emit this message: 
"EXTRA IGNORED". It is good practice 
to precede every line containing source 
code (text) by a quote sing. The quote is 
"thrown away" by the Level-IT Basic in­
put r outine. The editor lists lines in 
alignment with lines typed in this fashion, 
for the consistant appearance if People's 
Pascal block-structure indentation of the 
on the screen. It is not necessary to pre­
cede cdhimand lines by a quote, since these 
never contain a comma or a colon. 

A line to be inserted into the text buffer 
is typed preceded by its line number. If 
there was already a line in the buffer with 
this number, then the new line will replace 

the old line. otherwise the new line will 
be inserted into the buffer in position ac­
cording to its line number. 
5. DELETING LINES - D: 

To delete a single line, simply type its 
line number. This line will be deleted 
from the buffer. To delete several lines, 
the D command can be used. D alone will 
delete line 100 (same effect as just typing 
delete lene 100 (same effect as fust typing 
100). Dl00-500 will delete lines 100 to 
500 inclusive. Some delay may be noticed 
when m~y lines -~re deleted at once. 

6. LISTING LINES-L: 
The L command is used to list lines in 

the text buffer on the screen. Just L will 
list all the lines in the buffer. LlOO will 
list line 100. Ll00-500 will list lines 100 
to 500 inclus ive. "L." (without quotes) 
will list the current line. L.- will list 
from the current line to the end of the 
text buffer. Note that the ENTER key 
will cause the operation of the list com= 
mand to be terminated, with the current 
line being the last line listed (i. e. L.­
will continue the listing again from the 
point where it was terminated by hitting 
ENTER. 
7. RENUMBERING LINES - N: 

The N command is used to assign new 
line numbers to lines in the text buffer. 
This can be useful if it is desired to in­
sert text from a cassette file into a given 
location. Lines can also be moved by 
saving them on cassette, deleting them, 
renumbering the remaining lines, and then 
reading back in the original lines from 
cassette · 

Lines are renumbered starting from a 
base number until the end of the buffer. 
Just N will cause all lines in the buffer to 
be renumbered. N500 will cause lines 500 
onwards to be renumbered. When the N 
command has been entered, the editor will 
ask for the new base and increment. 
Lines will be renumbered starting from 
this base with this increment. The new 
base must be greater than the line num­
ber of the line below the iines being re­
numbered. 

s: READING TEXT 
FROM CASSETTE-R: . 

Lines on PPEC cassette files are stor­
ed as variable-length records in variable­
length blocks of. up to 240 characters. 
The Rcommand will cause the bextblock(s) 
on the cassette to be read into the text 
buffer in position according to their line 
numbers. If there is already a line in the 
text buffer with the same number as a 
line being read from cassette, then the 
old line will be replaced. Just R will read 
in the next block. ruoo will read in the 
next 100 blocks, or stop at the next end­
-of-file mark, or until the text buffer be­
com~_Jull, whichever ()CCours first, 
9. WRITING LINES 

TO A CASSETTE FILE - W: 
The W command will cause lines to be 

written to cassette. Just W will cause all 
the lines in the buffer to be written to the 
cassette in blocks, Wl.60-500 will cause 
lines 100 to 500 to be written to cassette. 
Lines are written as variable-length re­
cords in variable-length blocks of up to 
240 characters. A "short" block may be 
written as the last block of a line num­
ber range. In addition, a line starting 
with a "$" sign will always be the last 
line in its block (Refer to "$INCL" in 
compiler documentation). 

On completion of the write command, 
the editor will ask whether the lines writ­
ten out to cassette should be deleted from 
the text buffer C'DELETE?"). A reply of 
"Y'' will cause these lines to be deleted 
from the text buffer. Any other reply will 
leave these lines unchanged in the text 
buffer. This option is provided for the 
editing of files that are too big to all fit 
in the edit buffer at once. 

If the write command was a write to 
the end of the text buffer, then TPEX will 
prompt with "EDF?" on completion of the 
write. If the reply to this prompt is "Y'' 
then an end-of-file mark will be written 
to the file at this point (same effect as 
-E command). 

10. COMPILE - C: 
The C command will pass control from 

the People ' s Pascal editor to the com­
piler, which will attempt to compile lines 
from the text buffer. If it is required to 
compile a file from cassette, then it will 
be necessary to insert a line such as 
"100$INCL FRED" into the text buffer 
before invoking the compiler. Before com­
pilation commences, the compiler prompts 
with an "LP?". If the reply · is "Y'', then 
the listing output will be printed on the 
lineprinter rather than being displayed on 
the screen. 

The compiler then prompts with an" OBJ 
FILE?". If the ENTER key is pressed, 
then no object file will be generated, and 
the compile will be for syntax errors 
detection only. Any other r eply will cause 
an object file to be generated. In one­
cassette systems, where source input is 
being accepted from cassette, it will be 
necessary to change cassettes and 
cassette-drive operating modes (play I 
record) when the compiler prompts, be-

TRS-80 COMPUTING 1:4 PAGE 13 

tween the source file cassette(s) and the 
object file cassette. and edit them. Remove the input cassette 

and mount the chosen output C!J.ssette. 
Write out the edited lirlesfrom the text 
buffer to the output cassette. Remove the 
output cassette and remount the input 
cassette. Read in some more text from 
the input cassette and repeat the process. 
Repeat .until all input text has been pro­
cessed (end-of-file- or "#EOF") encoun­
tered, and all edited text has been writ­
ten to the output cassette. It is advisable 
to keep one old version of a file, in case 
the most up-to-date version is lost, ac­
cidentally erased, or becomes unreadable . 
Alternatively, a copy of the current ver­
sion may be made by using the above 
process without any editing. 

11. PRINT ON LINEPRINTER 
TEXT BUFFER LINE(s) , P: 

This command is used in exactly the 
same way as the L command, except that 
the output appears on the lineprinter 
rather than the screen. 

12. CREATING, MAINTAINING 
LARGE FILES: 

It is possible to create and maintain 
cassette files of indefinite length with the 
People's Pascal editor, even with only 
one cassette drive, although large files 
of People's Pascal source code are not 
recommended (refer to compiler docu­
mentation on modular programming). 

To create a large file, type lines into 
the. text buffer until it becomes nearly 
full, mount an output cassette and write 
the contents of the buffer out with the W 
command, deleting the text that has been 
written out. Type more lines into the text 
buffer, with higher line numbers, and re­
peat the process until the complete file 
has been written out. Write an end- of­
file mark to the output cassette. 

IMPORT ANT NOTE: 
PPEC text files are blocked on cassette . 

This means that the file consists of blocks 
of data with "gaps" in between. It is this 
feature which makes many of the features 
of the program possible. It is expecially · 
important that cassettes that are to be 
used as output files from the editor should 
be er ased before they are used. Bulk 
erasure is not necessary. Simply rewind 
the cassette, set the recorder on manual 
(disconnect computer remote controlf and 
record over the whole cassette. This can 
be done any time the recorder is not 
being used by the computer. 

To edit a large file, a new copy of the 
file is made on a fresh cassette, as fol­
lows. Mount the input cassette containing 
the current version of the file. Read sev­
eral blocks of the file into the text buffer 

BULLSEYE 
PEOPLE'S 
PASCAL 

SAMPLE PROGRAM 
1070'<* BULLSEYE*> 
1080 <*----------*> 
1090 
1100 
1110 
1120 
1130 
1140 

CONST CR=13; HOHE=28; CLEAR=31i WIDE=23i 
VAR STARs.x.v.Dx.Hx.ov.HY.I.J:INTEGER; 

MODE,ALIVE,SEED•H:INTEGERi 
XSTARS,YSTARS:ARRAY( 100) OF INTEGER; 

1150 $INCL PASLIB 
1160 
1170 

. 1180 
119() 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 
1310 
1320 
1330 
1340 
1350 
136(1 
1370 
1380 
1390 
140(1 
141(1 
1420 
1430 
1440 
1450 
1460 
1470 
1480 
1490 
150(1 
1510 
1520 
1530 
154(> 
1550 
1560 
1570 
:1.580 

;>\ :-;90 
1600 -..... 
1610 
162(1 
1630 
164(> 
1650 
1660 
1670 
1680 
l69(1 
1700 
1710 
172(1 
1730 
1740 
175(1 
1760 
1770 
1780 

FUNC TARGET(X,Y>; VAR I:INTEGERi BEGIN 
WRITE<HOHE•CLEAR>i 
FOR I:=-2 TO 2 DO BEGIN 

SET<l,X+I,HI>i SET(1,X+I,Y-IH 
END; 
SEED:=RND<SEEDli 
HX:=HX+<SEED SHR 1> AND 1 - <SEED SHR 2> AND 1i 
HY:=HY+<SEED SHR 31 AND 1 - <SEED SHR 4) AND li 
TARGEt:=~<X>=O>AND<X < 128~ND<Y>=OIAND<Y <4811i 

END; . 

FUNC FIRE; VAR Q,W,E:INTEGERi BEGIN 
WRI~E<HOHE,'FIRE!' Ii 
G:=42; w:=a6; 
FOR'. E:=23 DOWNTO 12 DO BEGIN 

SE:T(l,Q,EtEH SET<1,w,E+E>i 
!H=IH2; W:=W-2i 

END; 
FOR E:=l TO 100 DOi 
FIRE:=<<X<66>AND<X>621AND<Y <26>AND<Y >22)); 

END; 

FUNC ACTION; VAR CHR:INTEGER; BEGIN 
CHR:=MEH<15359); <*KBD HEM.AREA*> 
IF CHR>=64 THEN BEGIN DX:=DX-2i CHR:=CHR-64 END; 
IF CHR>=t32 THEN BEGIN DX: =DXt2; CHR: =CHR-32 END; 
IF CHR>=16 THEN BEGIN DY:=DY- li CHR:=CHR-16 ENDi 
IF C~~>=S THEN BEGIN DY:=DY+1; CHRl=CHR-8 END; 
ACTibN:=1; IF CHR>O THEN ACTION:=NOT <FIREli 

EN Di 

PROC CHANGEi VAR I•TMPX,TMPY:INTEGER; BEGIN 
X:=XtDXtHXi 
Y:=< Y SHL 1 .+DY+HY > SHR 1; 
FOR I:=l TO STARS DO BEGIN 

TMPX:=XSTARS( II; TMPY:=YSTARS< I J; 
TMPX:=C<TMPX •SHL 41tTMPX-63-DX l SHR 4; 
TMPY:=CCTMPY SHL 41tTMPY-23- DY > SHR 4; 
IF<CTMPX< O JOR <TMPY<OJOR< TM PX>12710RCTMPY>47 ll THEN 
BEGIN 

SEED:=RNDCSEED>I TMPXl=SEED AND Z007F; 
SEED:=RNDCSEED); TMPY:= SEED AND %003Fi 

END; 
YSTARS( I >:=TMPY; 
XSTARSU).) ;;;.IMPX; 

END; · tV"' ..:-~ t 

IF< C XSTARSC 1 •l<Jl<l I OR ( XSTARS\ l >>1 l<l J l THEN BEGIN 
XSTARSC 2 l: =XSTARS< l H:L; 
YST ARSC 2J:=YSTARS<11; 

END; 
END; . 

PROC SIGHTS; BEGIN 
SETI 1,64,2;31; SET< 1, 6 4, ~.~5); 

SETI 1.63, 24); SET I 1, 65,24); 
END; 

BEGIN 
WRITECHOME,CLEAR, ' MODE (f~,[I)? ; 1; READ\ MODE ii 
WHILE 1 DO BEGIN C* LOOP FOREVER*> 

DXl=(l; DY:=Oi HXl=(I; HY: :=(>i 
ALIVEl=H 



.PAGE 14 'rI~60 COMPUTING 1:4 copyright aprjl um~. Pipe Dream Bortware: 

PEOPLE'S PASCAL 
TRANSLATOR 

POKE16SS3,2SS:CLS:PRINT•TRS-SO PEOPLE'S PASCAL T!NSLATOR V2,1°: 
PRINT•COPYRIGHT (C) PIPE DREAM SOFTWARE APRIL 19 9•:PRINT 

2 IFPEEK(16S9S)+PEEK(16S99)*2S6+2<>23000THENPRINT•W RNING - MEMORY 
SIZE SHOULD BE 23000 FOR NORMAL USE 8 :STOP 

3 PRINT•DEFAULT REPLIES TO PROMPTS ARE SHOWN IN BRA ETS:•:PRINT 
S CLEAR(5SO):DEFINTA-Z:Y=32766 
7 X=24000:A$= 1 PCODE START ADDRESS•:GOSUB27 
9 X=23000:A$=•zso CODE START ADDRESS•:GOSUB27 
11 X=22999:A$=•zso STACK ADDRESS (GROWS DOWN) 8 :GOSUB27 
13 IN$="F": INPUT•OPTIMISATION: F=FAST,S=SMALL (F) 8 ; IN$: IFIN$=•S•THEN 

OP=l 
15 X=OP :GOSUB29 
17 IN$= 8 Y•:INPUT 1 DISPLAY CODES (Y)";IN$:1FIN$= 8 Y"THENDl=1 
19 X=DI :GOSUB29 
21 IN$ =•N•: INPUT• PRINT CODES (N) •;IN$: IF IN$=• Y"THENLP= 1 
2 3 X=LP :GOSUB29 
25 PRINT•MOUNT PCODE INPUT FILE ON CASl AND TYPE 1 RUN 10 :DELETE1-29 
27 PRINTA$" ( 8 X•)•;:INPUTX 
29 Y=Y-2: I =VARPTR ( X) : POKEY, PEEK (I): POKEY+l, PEEK (I+ 1) : RliTURN 
31 Y=32766:GOSUB39:PS=X:GOSUB233:PP=PS 
33 GOSUB219:1FP1<>253ANDP1<>254THENPOKEPP,P1:PP=PP+1:POKEPP,P2: 

P P=PP+ 1: POKEP P, P 4: P P=PP+ 1: POKEP P, P 3: PP= PP+ 1ELSEGOSUB 2 3 7 
35 JFP1<>2S5THEN33ELSE41 
37 ZS$=ZS$+CHR${229):RETURN 
39 Y=Y-2:X=PEEK(Y)+PEEK(Y+1)*2S6:RETURN 
41 CLEAR(330):DEFINTA-Z:DIMPA(190),ZA(190):Y=32766:GOSUB39:PS=X: 

GOSUB 39: ZS=X :GOSUB 39: SP=X:GOSUB 39: OP=X: GOSUB 39: DI =X:GOSUB 3 9: LP=X 
43 JT=l SS 1 S: CO$=• LI TOPRL9[)STOCAJ- I NT JMP J PCCS pn: ZS=ZS+ 12 
45 AS= 1: p P=P.S: zp .. zs: PR I NT. PASS 1.: GOSUB s 9: GOSUB6 9 
47 AS=2: PP=PS: ZP=ZS: PRINT• PASS 2" :GOSUBSS 
49 ZS=ZS-12:LT$=•~:AS=3:PP=PS:ZP=ZS 
S 1 XX•SP :GOSUB 173: ZS $=CHR$ ( 221) +CHR$ ( 33) +CHR$ (XL) +CHR$ (XH) +CHR$ ( 221) + 

CHR$ ( 249): XX= J T+ 120:GOSUB173: ZS $=ZS $+CHR$ ( 33) +CHR$ (XL) +CHR$ (XH) + 
CHR$ ( 229) +CHR$ ( 229) +CHR$ ( 229) :GOSUB 199 :ZP=ZP+LEN (ZS$) . 

S 3 GOSUB97: ZS$=CHR$ (19 5) +CHR$ (0) +CHR$ (0) :GOSUB199 
5 S A$=• -CODE SIZE=•: ZP=ZP+ 3: PR INT: PR I NT• P"A$; PP-PS: PR I NT "Z"A$ ;ZP-ZS: 

.PRINT•RATIO=• (ZP-ZS)/ (PP-PS) :PRINHFIRST ADDR=•ZS; :X=ZS:GOSUBS7: 
PRINT•LAST ADDR= 8 ZP;:X=ZP:GOSUBS7:END 

S 7 Y=VARPTR ( X) :BY= PEEK (Y+ 1) .:GOSUB 209: PR I NT• (HEX • HX$ ;':BY= PEEK (Y) : 
GOSUB209:PRINTHX$• )•:RETURN 

59 PC•PP:GOSUB73 
61 IFP1=2SSTHENRETURN 
6 3 I FP 1=60RP 1=70RP 1 =4THENPA=PC: GOSUB 7 5 
65 PP=PP+4 
67 GOTOS9 
69 FORI =1TOAN-1: FORJ =2TOAN-1+1: I FPA(J) <PA ( J-1) THENK=PA ( J): 

PA(J)=PA(J-l):PA{J-l)=K ELSE IFPA(J)=PA(J-l)TI-IEN PA(J-1)=0: 
71 NEXTJ:NEXTl:RETURN 
73 PJ=PEEK(PC) :P2=PEEK(PC+1) :P4=PEEK(PC+2) :P3=PEEK(PC+3) :GOT077 
15 AN=AN+l:PA(AN)=PS:RETURN 
77 Nl=256*P3+P4: IFN!>32767THENPS=N!-6SS36:RETURNELSEPS=Nl:RETURN 
79 IFP1>=140R(LP=OANDDl=O)THENRETURNELSEA$=STR$({PP-PS)/4)+ 0 •+MID$ 

(C0$,3*P1+1,3):1FX=1THEN~$=A$+•X• 
Sl A$.=A$+STR$(P2)+• 8 +STR$(PS) :IFDl>OTHENPRINTA$; 
83 IFLP>OTHENLPRINTA$;:RETURNELSERETURN 
S5 CL=O:AP=l 
S7. ZP=ZP+CL:PC=PP:GOSUB73 
89 IFP1=25STHENRETURNELSEGOSUB10S:CL=LEN(ZS$) 
91 IF (PC-PS) /4>PA(AP)THENAP=AP+1: IFAP<=ANTHENGOT091 
93 IF(PC-PS)/4=PA(AP)THENZA(AP}=ZP.:AP=AP+1 
95 PP=PP+4:1FAP<=ANTHENS1ELSERETURN 
97 PC=PP:GOSU873: IFP1=2SSTHENRETURN 
99 GOSUBl OS:GOSUB79:GOSUB103 
101 PP=PP+4:GOT097 
1~3 ~OSUB199:ZP=ZP+LEN(ZS$):RETURN 
105 za$=••:X=O:IFP1>STHENX=l:P1=P1-16 
107 IFNOT(Pl=O OR (P1=8 AND P4=S))THENLT$=•• 
l09 IFP1>=0ANDP1<=SON P1+1GOT0113,11S,125,13S,143,149,1S7,1S9,16S 
111 PRINT•BAD PCODE•:STOP:RETURN 
11 3 LT$ =;LT$ +CHR$ (P4) : I FOP= lANDP S> =OANDP 5 < 2 S6THENZ8$=CHR$ ( 231) + 

CHR$(P4):RETURNELSEGOSUB1S1:GOT037 , 
11 S I FP 4< > 2ANDP4< > 19ANDP4<>20ANDP 4< > 21THENXX"" J T+ ( 20+P4) *3 :GOT0175 
11 7 I FP 4,.20THENZ8 $=CHR$ { 225) -kHR$ ( 43) :GOT03 7 

119 IFP4=19THENZS$=CHR$'(22S)+CHR$(3S):GOT037 
1 21 I FP 4=2THENZS $=CHR$ ( 225) +CHR$ ( 209) +CHR$ ( 2 S) :GOT03 7 
123 ZS$=CHR$ (225) :GOSUB37:GOT037 
125 IFP2=2S5THENXX=JT+39*3:GOT0175ELSERT=X+X 

1 27 I FP2= OANDX=OANDP 5> -64ANDP5 < 64THEN I FOP= lTHENGOSUB 187: 
ZS $=CHR$ ( 239) +CHR$ ( P 7): RETURNELSE1S3 

129 IFP2=1ANDX=OANDPS>=OANDPS<12SANDOP=1THENZS$=CHR$(207)+ 
CHR$(2S6-P5-PS) :RETURN 

131 GOSUB177:1FP2<>0THENGOSUB1S9:RT=RT+1 
133 XX=JT+RT*3:GOT017S ,·. 
135 IFP2=25STHENZS$=CHR$(209)+CHR$(22S)+CMR$(11S):RETURN 
1 3 7 I FP 2= OANDX=OANDP S > -64ANDP S < 64THEN I FOP=.f'FHENGOSUB 1S7: 

ZS$=CHR$(247)+CHR$(P7):RETURNELSE1S5 
139 IFP2=1ANDX=OANDPS>=OANDPS<12SANQOP=1THENZS$=CHR$(2S5)+· 

CHR$(2S6-PS-PS):RETURN t~· 
141 RT=4+X+X:GOT0131 
143 IFP2=255THENXX=JT+19*3:GOSUB17S:RETURN 
145 RT=S:IFP2<>0THENGOSUB1S9:RT=RT+1 
147 XX=JT+RT*3:GOSUB175:GOSUB193:GOSUB191:RETURN 
149 I FP5=0THENRETURNELSE l_FP5> 20RP5<-3THEN1.55. 
1 51 ZS$=" 11: I FP 5> OTHENFORXL= 1TOP 5: Z·S$=ZS $+CHR~ ( 59) +CHR$ ( 59): NEXT: RETURN 
153 FORXL=1TO-PS:ZS$=ZS$+CHR$(193) :NEXT: RETURN 
1S5 XX=-P 5-P 5: GOSUB 173: ZS $=CHR$ ( 33) +CHR$ (XL) +CHR$ (XH) +CHR$ ( 57) + 

CHR$(249):RETURN 
157 IFPS<>(PP-PS)/4+1THENGOSUB193:GOSUB191:RETURNELSERETURN 
159 ZS$=CHR$(241):RT=210:1FP2>0RT=21S 
161 GOSUB 193:ZS $=ZS $+CHR$ (RT) +CHR$ (XL) +CHR$ (XH) 
163 RETURN ' 
165 IFP4=STHENLN=ASC(RIGHT$(LT$,1))+1: IFOP=1THENZP=ZP-2*LN 

ELSEZP=ZP-4*LN 
167 XX=JT+(10+P4)*3:GOSUB17S 
169 IFP4=STHENZS$=ZS$+LEFT$(LT$,LN-1)+CHR$(0) 
171 RETURN 
173 XH•VARPTR (XX).: XL= PEEK ( XH): XH=PEEK ( XH+1}: RETURN 
175 GOSUB173:ZS$=ZS$+CHR$(20S)+CHR$(XL)+CHR$(XH):RETURN 
177 P6=-P5*2:P8=1NT(P6/256):P7=P6-PS*256:t•18<0THENPS=256+PS 
179 ZS$=CHR$ (33) +CHR$ (P7) +CHR$ (PS):RETURN 
1 Sl Z8$=CHR$ (33) +CHR$ (P4) +CHR$ (P3) :RETURN 
1S3 GOSUB1S7:ZS$=CH~$(221)+CHR$(110)+CHR${P7)+CHR$(221)+CHR$(102)+ 

CHR$(P7+1):GOT037 . 
lSS GOSUB1S7:ZS$=CHR$(225)+CHR$(221)+CHR$(117)+CHR$(P7)+CHR$(221)+ 

CHR$(116)+CHR$(P7+1):RETURN 
1S7 P 7=-P S* 2: I FP 7 < OTHENP 7= 25 6+P 7: RETURNELSERETURN 
1S9 ZS$=Z8$+CHR$(62)+CHR$(P2):RETURN .. 
191 Z8$=ZS$+CHR$(19~)+CHR$(XL)+CHR$(XH):RETURN 
193 GOSUB195:XX=ZA(IX):GOSUB173:RETURN 
195 FORlX=lTOAN: IFPA(IX)<>PSNEXT 
197 IFPA(IX)<>PSTHENIX=O:RETURNELSERETURN ' 
199 A$=• n :X=LEN (ZS$): I FX>OTHEN IF (DI =10RLP•J)THENA$=STR$ ( ZP) +• 0 : 

BY=PEEK(VARPTR( ZP) +1) :GOSUB209:A$=A$'+H'X$:BY=PEEK(W.RPTR( ZP)): 
GOSUB 2 09: A$=A$ +HX$+• n: FOR I= lTOX :G'OS0B!'07: GOSUB 2 09: A$=A$ +HX$: 
NEXT: ELSEFOR I =HOLEN (ZS$) :GOSUB 207: NEXT 

201 IFDl>OTHENPRINTTAB(20) ;A$· l, _ 
203 IFLP>OTHENLPRINTTAB(20) ;A$ . 
205 RETURN 
207BY=ASC(MID$(ZS$,1,1) ):POKE(ZP+l-1) ,BV:RETURN 
209 HX$=•• :BH=INT ( BY/16) :HX=BH:GOSUB211 :HX=BY-BH*16:GOSUB211 :RETURN 
211 HB=ASC(•on ):IFHX>9THENHB=ASC("A" ):HX•HX-10 
213 HX$=HX$+CHR$(HB+HX):RETURN 
215 POKEPC,P1:POKEPC+1,P2:~0KEPC+2,P3:POKEPC+3,P4:RETURN 
217 RETURN 
219 IFIP> LEN(IB$)THENGOSUB239 

221 P1=ASC(MID$(1B$,IP,1)):1P=IP+1 
223 P2=ASC(MID$ ( IB$, IP, 1)): I P=I P+l 
225 P4=ASC(MID$ ( IB$, IP, 1)): I P=I P+l 
227 P3=ASC(MID$(1B$,IP,1)):1P=IP+1 
229 RETURN 
231 DATA 62, 0, 33, 230, 65, 205, 1S,2, 205, 1SO,2, 205, 53, 2, 71, 119, 35, 205, 53, 

2,119,16,249,20S,24S,1,201,-1 ) . 
233Z9$=••:RESTORE . , 
2 35 READX: I FX> =-OT HE NZ 9 $=Z9 $+CHR$ (X) :GOTOUS§.LSE IP= 1: RETURN 
2 37 I FP 1=25 3THENMI =P3* 2 56+P4: RETURNELSEPQK~lt'I *4+P S+ 2, P 4: POKEMI *4+P S+ 3, P 

PRINT"ADD•P3*256+P4°AT"MI :RETURN d, 
2 39 X=VARPTR ( Z9 $) : POKE16526, PEEK ( X+l): P~IJ1.~,527, PEEK ( X+2) : X=USR ( 0): 

LN=PEEK ( 16S70): IB $=STRING$ (LN, 1 *"): J •VARPTR( IB $) +1: J =PEEK ( J) + 
PEEK(J+1)~256:FORl=1TOLN:POKEJ+l-1,PEl~(16S70+1):NEXT: IP=1:RETURN 

PEOPLE'S PASCAL 
INTERPRETER 

1 GOT09900 
100 SZ=600:S1=SZ-20:DIMS(SZ):M$="LITOPRLODSTOCALINTJMPJPCCSP• 
1000 CLS:PRINT•TRS-SO PEOPLE'S PASCAL INTERPRETER (PPINT)•: 

PRINT•COPYRIGHT (C) 1979, PIPE DREAM SOFTWARE":PRINT 
1002 PS=24000:PRINT•PCODE ADDRESS (•PS•)•;:INPUTPS:PP=PS 
1010 Z$=•Y•:PRINT•READ IN PCODES ("Z$" ) 8 ;: INPUTZ$: IFZ$= 8 N°THENRETURN 

ELSEINPUT"MOUNT PCODE INPUT FILE ON CAS1" ;Z$ 
1012 GOSUB300SO 
1013 GOSUB30010:1FP1<>253ANDP1<>254THENPOKEPP,P1:PP=PP+1:POKEPP,P2: 

PP=PP+l:POKEPP,P4:PP=PP+1:POKEPP,P3:PP=PP+1:ELSEGOSUB30100 
1014 IFP1<>f55THEN1013ELSEIB$= 0 •:RETURN 
9900 CLEAR(600):DEFINTA-Z:POKE16SS3,255 
9905 U= 1 S :BL= S: D IMTR(U) ·,BR (BL) :GOSUB 1 00 :GOT020S20 
20040 BA=B 
20041 IFL<=OTHENRETURNELSEBA=S (BA) :L=L-1 :GOT020041 
20060 U=5:A=O:Z=PS:T=O:B=1:P=O:ST=O:S(l)=O:S(2)=0:S(3)=-1:PO=O:TP=U: 

K=O:FORl=OTOU:TR(l)=-l:NEXT:RETURN 
20090 X=P*4+Z:GOSUB20690:A=NI :TP=TP+l: IFTP>UTHENTP=O. 
20100 TR(TP)=P:P=P+l:PO=P:K=K+l:F=PEEK(X): IFF<=STHENIX=OELSEIX=l:F=F-16 
20120 ON F+1 GOT020140,201S0,20520,20S40,20S30,20SS0,20S60~20570,205SO 
20130 PRINT"BAD OPCD•:ST=1:RETURN 
l0140 T=T+l:S(T)=A:RETURN 
20150 T~T-1:SA=S(T):SB=S(T+1):0NA+1GOT020200,20210,20220,20230,20240, 

202S0,20260,20270,202SO,Z0290,20300,20310,20320,20330,20340, 
203S0,20360,20370,203S0,20390,20400,20410 

20160 PRINT"BAD OPR 11 :ST=1:RETURN 
20200 T=B-1 :B=S (T+2): P=S (T+3) :RETURN 
20210 T=T+1:S(T)=-S(T):RETURN 
20220 S(T)=SA+S~:RETURN 
20230 S(T)=SA-SB:RETURN 
2 O 24 0 NI =SA* SB: IFNI < 3 27 6 7THENS (T) =NI ELS EM I =I NT (NI / 3 2 76 8) : S ( T) =NI -MI * 

3276S:PRINT 8 MUL OFLO•SA•••se•=•S(T) 
20241 RETURN 
20250 S(T)=INT(SA/SB):RETURN 
20260 T=T+1:S(T)=SAAND1 :RETURN 
20270 S(T)=SA-SB*INT(SA/SB1:RETURN 
.202~0 S(T)=SA=SB:RETURN 

20290 S(T)=SA<>SB:RETURN 
20300 S(T)=SA<SB:RETURN 
20310 S(T)=SA>=SB:RETURN 
20320 S(T)=SA>SB:RETURN 
20330 S(T)=SA<=SB:RETURN 
20340 S(T)=SA OR SB:RETURN 
20350 S(T)=SA AND SB:RETURN 
20360 t=T+l:S(T)=NOT S(T):RETURN 
20370 .S(T)=INT(SA*INT(2[SB+,S)):RETURN 
203SO S(T)=INT(SA/1Nf(2[SB+.5)):RETURN 
20390 T=T+l:S(T)=S(T)+l:RETURN 
20400 T=T+1:S(T)=S(T)-1:RETURN 
20410 T=T+2:S(T)=S(T-1) :R.ETURN , · 
205 20 L=PEEK ( X+1) : I FL= 25 STHENS (T) =PEEK (·S (T)): RETURNELSE IF I XTHENA>=A+S (T) 
20524 T=T+1-IX:GOSUB20040::S(T)=S(BA+A)!RETURN · 
2 O 5 30 L= p EEK ( X+ 1) : I FL< >2 5 STHENGOSUB 2 0040: S (T+ 1) =BA: S ( T+ 2) =B : S (T + 3) =P: 

.B=T+l:P=A:ELSEGOSUB30300 
20532 RETURN 
20540 L=PEEK{X+l): IFL=2SSTHENPOKES(T-1) ,S (T) :T=T-2:RETURN:ELSEIFIX 

THENA=S(T-l)+A 
20542 GOSUB20040:S(BA+A)=S(T) :T=T-1-IX:RETURN . 
20550 IFT>S1-ATHENPRINT•STACK OFL0 8 :ST=l:RETURNELSET=T+A:RETURN 
20560 P=A:RETURN 
20570 IFABS (S (T) )=ABS (PEEK(X+1) )P=A 
20572 T=T-1:RETURN 
205SO ONA+1GOT020600,20610,20620,20630,20640,20650,20660,20670,206SO 
20590 PRINT•BAD CSP 0 :ST=1:RETURN 
20600 T=T+1: INPUTA$:S(T)=ASC(A$):RETURN 
20610 PRINTCHR$(S(T));;T=T-1:RETURN 
20620 T=T+l: INPUTS(T):RETURN 
20630 PRINTS(T);:T=T-1:RETURN 
20640 T=T+1: INPUT A$ :GOSUB23000: S (T) =H: RETURN 
20650 H=S(T):GOSUB24000:PRINTA$;:T=T-1:RETURN 
20660 GOT020S90 
20670 GOT020S90 
206SO FORIX=T-S(T)TOT-1:PRINTCHR$(S(IX)) ;:NEXT:T=T-S(T)-1:RETURN 



20690 N!=PEEK(X+3)*2S6+PEEK(X+2):1FNI >32767THENN!=Nl-6SS36:RETURN 
ELSE RETURN . 

20710 X=PC*4+Z:N•PEEK(X)*3:Z$=• •:IFN>24N=N~48:Z$=nxn 

20720 GOSUB20690:1FN<LEN(M$)THENPRINT;PC;• •;MID$fM$,N+1,3) ;Z$; 
p EEK ( X+ 1) ; n , n ; NI ; : I FN=OANDNI <2 S6ANDNI > 32THENPR I NTCHR$ (NI ) 
ELSEPRINT 

20730 .RETURN 
2 07 60 I FP < OTHENST= 1: RETURNEL SE FOR I= 1TOB P: I FBR (I) =PTHENPR I NT"· BREAK 11 ; : 

PC=P:GOSUB20710:ST=1 
20770 NEXT:RETURN 
2 0820 GOSUB 2 0060: GOSUB 20710 :BP=O 
208 30 PR I NT" I NT>";: INPUTCM$ :GOSUB20840:GOT020830 
20840 IFCM$<> 11 G 11 THEN208SO 
2 08 42 ST= 0: GOS UB 2 0090: GOSUB 2 07 6 0: IFS T= OTHEN2 08 42ELSE RE TURN 
208SO IFCM$= 11 S"G0SUB20090:PC=P:GOSUB20710:RETURN 
20860 I FCM$< >• X 11 THEN20870 
20862 PRINT"P="P" B="B•' T=• T: IFT>-1PRINT" S·(T)=11 S(T): IFT>OPRINT 

II S(T-l)="S(T-1) 
20864 PR~NT:RETURN 
20870 IFCM$= 11 R"G0SUB200EO:GOT020842 
20880 IFCM$<> 11 T" THEN20890 
20882 PRINT" *TRACE*" :FORl=OTOU:TP=TP+1: IFTP>UTHENTP=O 
20884 IFTR(TP)>=OTHENPC=TR(TP):GOSUB20710 
20886 NEXT:RETURN 
20-8 90 l·FCM$ =" K" INPUT I: FOR) =TTOT-1 STEP-1: PRINTS ( J); :NEXT: PR I NT: RETURN 
20900 IFCM$<> 11 B• THENGOT020910 . 
20902 IFBP<'IL THENBP=BP+1: PRINTBP 11 :•;: INPUTBR( BP) :RETURNELSERETURN 
20910 IFCM$="C"BR(1)=0:BP*O:PRINT:RETURN 
20920 IFCM$="Y" FORl=1TOBP:PRINTBR(I); :NEXT:PRINT:RETURN 
20930 IFCM$=" E" lHENPO=O: INPUTPO: PC=PO:GOT020710 
20940 I FCM$ =" U" PO=P0-1: PC=PO: GOT020710 
209SO IFCM$="N"P0=P0+1 :PC=PO:GOT020710 
20960 IFCM$= 11 Q" THENSTOP 
20970 PRINT 11 ?? 11 :GOT020830 
30010 IF I P>LEN ( IB $ )•THENGOSUB 30200 
3 00 20 P 1 =ASC (Ml D $ ( I B $, I P, 1 ) ) : I P =I P+ 1 
30030 P2=ASC(MID$ ( IB$, IP, 1)): I P=I P+1 
30040 P4=ASC(MID$(1B$,IP,1)):1P=IP+1 
300SO P3=ASC(MID$(1B$, IP,1) ): IP=IP+l:RETURN 
3 O O 7 O DAT A 6 2, 0, 3 3, 2 3 0, 6 S, 2 0 S, 1 8, 2, 2 0 S, 1 S 0, 2, 2 0 S, S 3, 2, 7 1, 1 1 9, 3 S, 2 0 S, 

53, 2, 119, 16 .• 249, 20S, 248, 1, 201, -1 
30080 Z9$= 1111 :RESTORE 
30082 READX: IFX>=OTHENZ9$=Z9$+CHR$ (X) :GOT030082 
30084 IP=l:RETURN 
30100 IFP1=2S3THENMI =P3*2S6+P4:ELSEPOJ<EMI *4+PS+2,P4:POKEMI *4+PS+3, P3: 

PRINT"ADD"P3*256+P4 11 AT 11 M! 
30120 .RETURN 
30200 I 

3 021 O X=VARPTR ( Z9 $) : POKE 1 6 S 26, PEEK ( X+ 1) : POKE165 2 7, PEEK ( X+ 2) : X=USR ( 0) : 
LN= PEE~ ( 168 7 0) : I B $ = 11 " :FOR I= 1TOLN: I B $=I B $ +CHR$ (PEEK ( 1687 0+ I ) ) : 
NEXT: IP=l:RETURN 

30300 IFS(T)<>19968THENPOKE16S26,S(T)-INT(S(T)J256)*256:POKE16527, 
I NT ( S ( T ) / 2 5 6 ) : Z Z =US R ( 0 ) : T = T - 1 : RE TU RN 

30305 T=T-3 
30310 IFS(T-1)<0 OR S(T-1)>47THEN30340 
30320 S(T-2)=S(T-2)-INT(S(T-2J/128)*128 
3032S IFS(T-2)<0THENS(T-2)=S(T-2)+128:GOT030325 
30330 IFS(T-3)=1THENSET(S(T-2) ,S(T-l))ELSERESET(S(T-2) ,S(T-1) 
30340 T=T+l:RETURN 

;SOURCE LISTING: 
copyright april 1979, Pipe Dream Software: 

EDITOR 
1 GOT0194 
2 IFR=OTHENRETURNELSE7 
3 GOSUB 1 0: GOT02 

.4 S(S9)=X:S9=S9+1 :RETURN 

ASSEMBLER 

: ~=~~:~~~1~:1~~~~~~!~:=1:X$=MID$(L$,C0,1):T=ASC(X$):RETURNELSEGOSUB3 
IFLN<MLTHEN6ELSEE=9:R= 11 • n 

7 GOT028 
8 GOSUB77:GOT0103 
9 IFOF$<>""THEN181ELSERETURN . 
10 .. IFT=32THENGOSUB6:GOT010ELSE38 
11 GOTOl 11 

1 2 T 1=T1+1 : T $ ( T 1 ) =A$: TO$ =LEFT$ (TO$, T 1 -1) +K$: I FK $ = 11 C 11 THENT2 ( T 1 ) =N3: RETURN 
TRS-80 COMPUTING li4 PAGE 15 

ELSETl (Tl) =L 1: I FK$ =• V•ANDF9THENT2 (Tl) =DO: DO=DO+ 1: RETURNELSERETURN 7 4 IF MID$ (TO$, I , 1) < >" C• THENE=2: GOSUB 7 
13 V=O:GOT09 7S N3=T2(1):RETURN 
14 S$(P8)=Y$:P8=P8+1:RETURN 76 R=1$:E=4:GOSUB2:K$=nvn:GOSUB12:GOT010 
1 5 P8=P8-1: Y$ =S $ ( P8): RETURN 77 I FO< >•+"ANDO<>•-" THENGOSUB 8 3: GOT07 9ELSE I FO=n -" Y$ =O:GOSUB 1 4 
16 GOSUB 21:GOSUB8: R= 11 ) 11 : E=34:GOT02 7 8 GOSUB 10 :GOSUB 8 3: GOSUB 1 5: I FY$="-• U=1 :W=l :GOSUB 1 3 
17 W=T2(V) :V=Ll-Tl (V) :GOT09 79 IFO=•+•ORO=•-•ORO=•OR •THEN80ELSERETURN 
18 U=l:GOT013 80 Y$=0:GOSUB14:GOSUB10:GOSUB83:GOSUB15 
19 U=O:GOT013 81 W=14:1FY$="-"THENW=3ELSEIFY$=•+•W=2 
20 W=O:GOTOl 3 82 GOSUB18:GOT079 
21 R=• (•:E=33:GOSUB3:GOT010 83,GOSUB88 
22 R=• (•:E=31:GOT03 84 IFO="*"ORO=•DIV •ORO=•AND •ORO=•MOD RORO=•SHL •ORO=•SHR •THEN 
23 R=• ) 11 :E=22:GOT02 ELSERETURN 
24 DEF. I NTA-Z: DEFSTRO, R: N1=32767:10=50: DI MT$ (TO) , S (SO) ,S $ ( 20) , T 1 (TO) , 8 S Y$ =O:GOSUB 14:GOSUB10:GOSUB88: GOSUB 1 S 

T2 (TO) , T 3 (TO) :M$ =•LI TOPRLODSTQCAL I NT JMP J PCCS P 11 : RETURN 86 W=1 5: I FY$=• 01 V 11THENW=5EL SE I FY$=• MOD • THENW= 7ELSE I FY$= 8 *" THENW=4 
2S WO$=•AND ARRAYBEGINCALL CASE CONST DIV DO DOWNTELSE END FOR FUNC ELSEIFY$="SHL "THENW=17ELSEIFY$="SHR 8 W=18 

IF INTEGMEM MOD NOT OF OR PROC READ REPEASHL SHR THEN TO 87 GOSUB18:GOT084 
TYPE UNTILVAR WHILEWRITE• 88 IF0=1$THEN91ELSEIFO=•NUM"THEN97ELSEIFO=•STR 8 THEN98 

2 6 0= n n: INPUT 11 LP n ; 0: L P=NOT (O= ••ORO=• N • ) : OF$ = 11 11 : INPUT 11 OBJ FI LE n ; OF$: 8 9 I FO=" ( 11 THEN9 9E L SE I FO=• MEM "THEN1 OOE L SE I FO=• NOT • THEN1 0 2 
OB$=STRING$(240, 11 *"):BZ=O:P=SA:N0=32:N2=8:1$= 11 IDENT•:L$=•• 90 E=23:GOSUB7 

2 7 T= 32: GOS UB 1 0: GO SUB 1 59: R=•. n : E= 9: GOSUB 2: U= 25 S: GOS UB 2 0: I FOF $ =• "ORBZ= 0 91 GOSUB 6 9: IF I= OTHENE= 11 : GO SUB 7 
THENRUNEL SEGOSUB 1 91: RUN 9 2 TT$ =MID$ (TO$, I, 1): I FTT$ =• P11 THENE=21: GOSUB 7 

28 PRINTUSING"##### 11 ;LN;:PRINT" •L$:PRINTTAB(C0+4) 11 [ ERROR: •;: 93 IFTT$="Y"THENU=S:W=1:GOSUB13:1=1-1:GOT0133 
X$=" EXPECTED•:o=• MISSING•:L$=•1LLEGAL " 94 IFTT$="A"TflEN101 

29 I FE= 2THENP RI NT" CONST" X$ELSE I FE.=4THENPR I NT I$; X$ELSE I FE= 5THENPR I NT n 1 : 9 S I FTT$ ':'" C• THENW=T 2 ( .1) :GOSUB 1 9 :GOT01 0 
I OR I: '"0ELSEIFE=10THENPRINT•';' 1 0ELSEIFE=11THEN_PRINT•UNDECLARED I 96 U=2:V=I :GOSUB17:GOT010 
1$ELSEIFE=12THENPRINTL$;1$ELSEIFE•16THENPRINT"THEN"X$ELSEIFE=17THE~ 97 U=O:W=N3:GOSUB13:GOT010 
PRINT"';' OR END 11 X$ELSEIFE<18THEN3 98 W=ASC('\C$):GOSUB19:GOT010 

3 0 I FE= 18THENP RI NT•DO• X$E-LSE I FE= 19THENPR I NT"BAD SYMBOL" ELSE I FE= 20THEN 99 GOSUB 1O:GOSUB8: I FO=• ) n THENl OELSEE=22: GOT07 
PR I NT"RELAT I ONAL OPR. • X$ELSE I FE=21THENPR I NTL$ 11 USE OF PROC. 11 I $ELSE 1 00 GOSUB 16:GOSUB10:U=2: V=2S 5: W=O: GOT09 
I FE= 23THENPR I NTL$" FACTOR"ELSE l1FE=~STHENPR I NT• BEGIN" X$ELSE I FE= 26THH 1O1 X= I :GOSUB 4: GOSUB 16: GOSUB 5: U= 18: V=X:GOSUB 1 7: GOT01 0 
PR I NT"OF 11 X$ELSE I FE< 27ANDE > 18THEN3 3 1 02 GOSUB 10:GOSUB88:W=16: GOT01 8 

31 I FE= 27THENP RI NTL$" HEX CONST" ELSE l FE= 28THENPR I NT 11 TO" X$E LSE I FE= 30THE~ 1O3 I FO=" =•ORO=• <>•ORO=• en CRO= n <="ORO=•>" ORO=•>=• THEN1 04E LSERETURN 
PRINT"NO.OUT OF RANGE 11 ELSEIFE=3STHENPRINT"PARAMETER MISMATCH 11 ELSE · 104 Y$=0:GOSUB14:GOSUB10:GOSUB77:GOSUB1S 
I FE=36THENPRINTL$"DATA TYPE•ELSEJFE>=27THEN33 105 W=8: IFY$=" <>• THENW=9 

32 RUN 106 IFY$= 11 <"THENW=10 
33 PRINT"' 11 R 111 •X$:RUN 107 IFY$=">=11THENW=11 
34 IFFL>OTHEN36ELSE:GOSUB248:GOSUB250:L$=L$+ 11 ":CO=O:GOSUB218: 108 IFY$=">"THENW=12 

IFLEFT$(L$,1}<> 11 $"THENRETURN 109 IFY$=•c=•THENW=13 
35 L$=RIGHT$(L$, (LEN(L$)-S) ):PRINT•FILE 11 L$"REQD- 11 ;:LM=-1:FL=FL+l:BL$=' 110 GOT018 

CM=3+FL 111 IFO=l$THEN113ELSEIFO=•IF "THEN138ELSEIF0= 11 FOR •THEN1SSELSE 
36 CM= 3+F L: GO SUB 2 46: IF L $ =• #EOF 11 THEN PR I NTL$: F L=F L-1 : GOT034 I FO= n WHILE" THEN1 45EL SE 1.f 0= 11 CASE • THENl 46E LSE I FO=• REP EA" THEN 143E LSE 
3 7 GOSUB 2 09: GOSUB 21 8: L $=L$ +n ": CO=O: RETURN I FO=• BEGIN• THEN1 40ELSE I FO=" READ n THEN1 24EL SE I F0= 11 WR I TE n THEN119ELSE 
38 IFT<650RT>90THEN48 IFO="MEM •THEN141 
39 K=O:A$=•• 112 IFO=•CALL •THEN132ELSERETURN 
40 IFK<N2THENK=K+l:A$=A$+X$ 113 GOSUB69 
41 GOSUB 6: I FT> 4 7ANDT< 580RT> 64ANDT< 91THEN40ELSE I FA$=• PROCEDUR• OR 1.14 IF I =OTHENE=l 1: GOSUB 7ELSETT $=MID$ (TO$, I, 1) : I FTT $=•A" THEN11 SELSE 

A$ = 11 FUNCTION" THENA$ =LEFT$ (A$, 4) I FTT $ =" y11 THEN116EL SE I FTT $=" yn THEN1t6ELSE I FTT$ =• P11 THENl 33ELSE 
42 A$=A$+STRING$(12-LEN(A$) , 11 •.) E=l2:GOSUB7 
43 1=1:J=N0*5-4:B$=LEFT$(A$,5) 115 X=l:GOSUB4:X=16:GOSUB4:GOSUB16:GOT0117 
44 K=INT((l+J)/10)*5+1:Z$=MID$(WO$,K,5):1FB$<=Z$J=K-5 116 X=l:GOSUB4:X=O:GOSUB4 
4S IFB$>=Z$1=K+5 117 GOSUB10:1FO=•:=•GOSUB10ELSEE=13:GOSUB7 
46 IFl'<=JTHEN44 118 GOSUB8:GOSUBS:K=X:GOSUB5:U=3+K:V=X:GOT01,7 
47 I Fl -5> JTHENO=B $: RETU'RNELSE :0•1.$ :RETURN 119 GOSUB22 
48 Z $=•":I FT< 480RT> 57THEN51 ELSEO=,•NUM• 1 20 GOSUB 1 0: I FO=• STR• THENL=LEN (A.C$): L'=O: y.;1): FOR I= tTOL: W=ASC (Ml D$ ('.C$, I , 1 ) ) 
49 Z$=Z$+X$:GOSUB6: IFT>=48ANDT<=57THEN49 GOSUB9:NEXT:W=L:GOSUB9:U=8:W=8:GOSUB9:GOSUB10:GOT0123 
50 N3=VAL(Z$):1FN3<=N1THENRETURNELSEE=30:GOSUB7:N3=Nl:RETURN 121 GOSUB8:K=1:1F0="#"K=3:GOSUB10ELSEIFO=•%•K=5:GOSUB10 
51 IFX$=•: 11 THENGOSUB6: IFX$=•=•THENO=• :=• :GOT06ELSE0= 11 : 11 :RETURN 122 U=8:W=K:GOSUB13 
52 I FX$= 11 <"THENGOSUB6:0= 11 <11 ELSE5S 123 IFO=• , 11 THENl 20ELSEGOSUB23:GOT010 
53 IFX$=" >•THEN0= 11 <> 11 :GOSUB6ELSEIFX$=•=•THEN0= 11 <= 11 :GOSUB6 124 GOSUB22 
54 RETURN 12S R=l$:E=4:GOSUB3:GOSUB69:1Fl=OTHENE=ll:GOSUB7 
SS I FX $ < > 11 > 11 THEN5 7 1 26 X= I :GOSUB 4: I FM ID$ (TO$, I , 1 ) =•-A• THENl 30E L SE I FM ID$ (TO$, I , 1 ) =• yn THEN 
56 GOSUB6:0=• > 11 : IFX$= 11 =• THEN O=• >=• :GOT06ELSERETURN L=OELSEE=4:GOSUB7 
S7 IFX$<> 11111 THENS9ELSE0= 11 STR•:C$=•• 127 GOSUB10:K=O:IFO=•#llTHENK=2 
S 8 GOSUB 6: I FX $= 0 1 n THEN6ELSEC$ =C $ +X$: GOTOS 8 1 28 U= 8: W=K :GOSUB 1 3: I FK> OGOSUB 1 0 
59 IFX$<> 0 (•THEN63 129 GOSUBS:U=L+3:V=X:GOSUB17:1F0= 0 ,•THENt25ELSEGOSUB23:GOT010 
60 GOSUB6: IFX$<>"*"THENO=• (•:RETURN 130 GOSUB16 
61 GOSUB6 131 'L=16:GOT0127 
6 2 I FX$ < > 11 * 11 THEN61ELSEGOSUB6: I FX $ < >11 ) 11 THEN6 2ELSEGOSUB 6: GOTOl 0 1 32 GOSUB 22:GOSUB10:GOSUB8: GOSUB 2 3: U= 4: V=2S 5: W=O: GOSUB 9: GOT01 0 
63 IFX$<>•%•O=X$:GOT06 . 133 K2=0:K3=1: IFT3( I )=OTHENl 36ELSEGOSUB22 
64 GOSUB 6: O=• NUM" : N3 =O: FOR I= 1T04: T=ASC (X$) 1 34 X=K2: GOSUB 4: X=K3: GOSUB 4: GOSUB 10:GOSUB8: GOSUB 5: K3=X: GOSUB 5:.K2=X+1: 
6S IFT>47ANDT<S8THEN67 IFO=• ,n THENl 34 
66' I FT> 64ANDT< 71THENT=T-7ELSE68 135 I FK2< >T3 (K3)E=35:GOSUB 7 :Gosue:p 
67 T=T-48:N3=N3*16+T:GOSUB6:NEXT:RETURN 136 U=4:V=K3:GOSUB17:1FK2<>0THENU=S:W=-K2:GOSUB13 
68 IF1>1THENE=27:GOSUB7:0=•%0 :RETURN 137 GOT010 
69 FOR I =Tl TOl STEP-1: I FA$< >T$ (I) THENNEXT: I =O: RETURNELSERETURN t 38 GOSUB 10:GOSUB8: R=• THEN n: E=l 6 :GOSUB2:GOSUB1 0: X=C1:GOSUB4: U= 7:GOSUB 20 
70 R= I$: E=4: GOSUB2: R= 11 =": E=3 :GOSUB3:GOSUB1O:GOSUB71: K$=• C11 :GOSUB12: GOT 1 GOSUB 11 
71 I FO= 11 NUM• THENRETURNELSE I FO= I $THEN7 3 1 39 I FO< >II ELSE n THENl 8 SELSEGOSUB 5: K=X: X=C 1 :GOSUB 4: U= 6: GOSUB 2 0: X=K: 
7 2 R=• STR 11 : E=2: GOSUB2 :N3=ASC ( C$): llETURN' GOSUB 186:GOSUB1O:GOSUB11 :GOT018S 
73 GQSUB69: IFl=OTHENE=2:GOSUB7 



PAGE 16 TRS-80 COMPUTING 1:4; 

140 GOSUB10:GOSUB11:1FO=";"THEN140ELSEIF0= 11 END 11 THEN10ELSEE=17:GOT07 
1 41 GOSUB 1 6 
142 R=• := 11 : E= 13:GOSUB3: GOSUB 10:GOSUB8: U= 3: V=25 5: W=O :GOT09 
143 X=Cl :GOSUB4 
1 44 GOSUB 1 0: GO SUB 1 1 : I FO= 11 ; " THEN1 44E LS ER= 11 UNT I L 11 : E= 1 0: GOS UB.2: GOS UB 1 0: 

GOSUB 8 :GOSUB 5: U= 7: W=X:GOT01 3 
145 GOSUB10:X=C1 :GOSUB4:GOSUB8:X=C1 :GOSUB4:U=7:GOSUB20:R= 11 DO ":E=18: 

GOSUB 2: GOSUB 10:GOSUB1 1: GO SUB 5: K=X: GOSUB 5: U= 6: W=X: GOSUB 1 3: X=K :GOT01 86 
146 GOSUB10:GOSUB8:R= 11 0F '':E=25:GOSUB2:12=1 
147 11=0 
148 GOSUB 1O:GOSUB71 :W=21:GOSUB1 8 :W=N3:GOSUB19:W=8:GOSUB18:GOSUB1 0: 

I F0= 11 : "THEN1 50 
149 R" 11 ," :E=5:GOSUB2:X=C1 :GOSUB4:U=7:V=1:W=O:GOSUB9:11=11+1 :GOT0148 
150 K=C1:U=7:GOSUB20:1Fll>OTHENFORl=1TOl1 :GOSUB185:NEXT 
151 X=K:GOSUB4:GOSUB10:X=l2:GOSUB4:GOSUB11:GOSUB5:12=X:IF0= 11 ELSE 11 THEN153 
1 5 2 I FO< ~ 11 ; n THENl 5 4E L SEK=C 1 : U= 6: GOS UB 2 0: GO SUB 1 8 5: X=K: GO SUB 4: I 2= I 2+ 1 : 

GOTOl 47 
1 5 3 K=C 1 : U= 6: GOSUB 2 0: GOSUB 1 8 5: X=K: GOSUB 4: GOS UB 1 0: X= I 2: GOS UB 4: GOS UB 1 1 : 

GOSUB 5: I 2=X 
154 R=• END II :E=17:GOSUB2:FORl=1TOl2:GOSUB185:NEXT:U=5:W=-1:GOSUBl3: 

GOT01 0 
1 5 5 R= I $ : E = 4: GOS UB 3 : GOS UB 1 1 3: GOS UB 4: F 9=1 : IF 0< > 11 TO 11 R= 11 DOWNT 11 : E = 2 8: F 9 = 0 
1 5 6 GOS UB 1 0: GOSLIB 8: GOS UB 5: K= X: X=C 1 : GO SUB 4: W= 21 : GOS UB 18:U=2: V=K: GO SUB 1 7: 

W= 1 3-F 9 • 2: GOS UB 18:X=C1 : GOS UB 4 
1 57 U= 7:GOSUB 20: X=F9 :GOSUB4: X=K:GOSUB4: R=" DO ":E=l 8 :GOSUB 2:GOSUB1 0: 

GOSUB 11 : GOSUB 5: U= 2: V=X: GO SUB 1 7 
158 K=X: GO SUB 5: W= 20-X: GO SUB 18:U=3: V=K: GO SUB 1 7: GOSUB 5: K=X: GOS UB 5: U= 6: 

W = X : G 0 SUB 1 3 : X = K : G 0 SUB 1 8 6 : U = 5 : W= - 1 : GOT 01 3 
159 D0=3:T2{T1-K1)=C1:U=6:GOSUB20:X=T1-Kl:GOSUB4 
160 IF0= 11 CONST 11 THEN162ELSEIF0= 11 VAR q1THEN164 
161 IFO=" PROC 'l1THEN1 70ELSE I FO=" FUNC q1THENl 71ELSE I F0= 11 BEG IN 1l1THENl 77 

ELSEE=25:GOSUB7 
162 GOSUB10 
163 GOSUB70:R= 11 ;" :E=5:GOSUB2:GOSUB10: IF0= 11 VAR 1!lTHEN164ELSEIF0="PROC 11 

THENl 7 OELSE IFO=" FUNC ~1THEN1 71ELSE IF0= 11 BEG I N 1!1THEN1 77ELSE1 63 
164 L=O:F9=1 
165 GOSUB10:GOSUB76 
166 L=L+1: I FO=", ryrn~ENl 65ELSER= 11 : 11 :E=5:GOSUB 2:GOSUB1 0: IF0= 11 ARRAY 1!1THEN1 67 

ELSER=" INTEG 11 :E=36 :GOSUB 2 :GOT01 69 
167 GOSUB21 :GOSUB71:R= 11 ) 11 :E=34:GOSUB3:R="OF 11 :E=26:GOSUB3:R= 11 INTEG•: 

E= 36: GOS UB 3: DO=D0-1 
168 F ORI =T 1-L+1TOT1 : TO$ =LEFT$ { T 0 $, I -1 ) +• A 11 +RIGHT$ (T 0 $, LEN ( T 0 $) -1 ) : 

T3( I )=N3+1 :T2( I )=DO:DO=DO+N3+1 :NEXT 
169 R=ll ;" :E=5:GOSUB3:GOSUB10: IF0= 11 PROC 111THEN170ELSEIF0= 11 FUNC q1THEN171 

EL SE I F0= 11 BEG I N'\1"n-iEN177E LSEL= 0: F 9=1 :GO SUB 7 6: GOTOl 6 6 
1 7 0 R = I $ : E = 4 : G 0 SUB 3 : K 1 = 0 : K $ =" P II : G 0 SUB 1 2 : L 1 = L 1 + 1 : GOT 01 7 2 
171 R=1$:E=4:GOSUB3:K$=" F" :GOSUB12:L1=L1+1:K1=1:K$= 11 Y 11 :GOSUB12 
172 K2=K1 :GOSU810:X=T1 :GOSUB4:X=DO:GOSUB4: IF0<> 11 ('HTHEN175 
173 GOSUB10:F9=0:GOSUB76:Kl=K1+1: IF0= 11 , 1!1THEN173 
174 GOSUB23:GOSUB10:T3(T1-K1)=K1-K2 
1 7 5 R = • ; 11 : E = 5 : GOS UB 2 : F 0 R I = 1 TOK 1 : T 2 ( T 1 - I + 1 ) = - I : NEXT 
176 GOSUB 10:GOSUB1 59:L1 =L 1 -1 : GOSUB 5: DO=X: GOSUB 5: T.1 =X: R= 11 ; 11 : E= 5: GOS UB 2: 

GOSUB10:GOT0161 
177 GOSU810:GOSUB5:K=X:X=T2(K) :GOSUB186:T2(K)=C1 :U=5:W=DO:GOSUB13 
178 GOSUB 1 1: I FO=ll ; 1!1THENGOSUB 1 0: GOT01 7 8 
179 IF0<> 11 END "E=17:GOSUB7 
180 GOSUB10:W=O:GOT018 
1 81 CC=U :GOSUB 188: CC=V: GOSUB 188: N4=VARPTR ( W): CC=PEEK (N4): GOSUB 188: 

CC=PEEK(N4+1) :GOSUB188: IFU>250THENRETURN 
182 IFU>16THENB$=11x11 :U=U-16ELSEB$=• 11 

183 B$=MID$(M$,U*3+1,3)+B$:1FLPTHENLPRINTTAB(40)Au 11 "8$ 11 11 V;W: 
ELSEPRINTTAB(40)Ad" 11 8$ 11 11 V;W 

184 C1=C1+1:RETURN 
185 GOSUB5 
186 I FOF$ :11 1!11HENRETURNEL SEU= 2 5 3: V= 0: W=X :GOSUB 9: U= 254: W=C 1 : GOSUB 9: P9=P9-8 
187 I FL PTHENL PR I NTT AB ( 40) 11 ADD" Cl "AT" X: RETURN ELSE PR I NT TAB ( 40) 11 ADD" C1 "AT 11 X: 

RETURN 
188 I FOF $ =• 1H1HENRETURN 
189 IFBZ>=240THENGOSUB 191 
190 BZ=BZ+1:LG=VARPTR(OB$)+1:POKE(PEEK(LG)+PEEK(LG+1)*256+BZ-l) ,CC:RETURN 
191 LG=BZ:08$=LEFT$ $,BZ) 

193 PRINT#-1,CHR$(LG)+OB$;:0B$=STRING$(240,•••):BZ=O:LM=CM:RETURN 
194 I 

195 DEF I NTA-Z: POKE16553,255: FOR! =16480T016492:READ J: POKE I, J :NEXT: 
FORl=16435T016437:READj:POKEI ,J:NEXT:POKE16405,0:DATA205,227,3, 183, 
200,14,23,16,254,13,32,251,201,195,96,64 

196 CLS:PRINT@7,CHR$(23);~11RS-80 PEOPLE'S PASCAL•;:PRINT@78, 
n ED I TOR/\CDMP ILER• ; : PR I NT@l 40, n (PPEC) VERSION 2. 3 u : PR I NT@266, 
" CDP YR I GHT (Ac) 1979 n ; : PR I NT@3 30, n P 1 PE DREAM SOFTWARE 11 ; 

197 PRINT@396,•BERWICK AUSTRALIA•;:PRINT@586,•0ISTRIBUTED BY C.l.E. 11 ;: 

PRINT@642, 11 BOX 158, SAN LUIS REY, CA 92068•;:PRINT@712, 
"COMPLETE SYSTEM - $15.00•; 

198 FORI =1T01 OS TEP I: FORJ =1TOI :NEXT: PRINTCHR$ (28); :FOR) =1TOI :NEXT: 
PRINTCHR$ (23); :NEXTI :PRINT@64*15,; :Sk=29700: I !=PEEK(16598)+ 
PEEK(16599)*256+2: 

199 IFl!<>SATHENPRINTCHR$(28);:PRINT@64*13,"* **ERROR - MEMORY SIZE 
SHOULD BE" ~·NOTll 1!"* * •11 :ENDELSEINPUT 8 0< 8 ;A:TA=32767:P=SA: 
POKESA,4:POKESA+1,0:POKESA+2, O:POKESA+3,32:POKESA+4, 3:POKESA+5,255: 
POKESA+6, 127:FA=P+6:GOSUB257:POKETA,14 

200 CLS:PRINT"CDMMANDS ARE:" :PRINT:PRINT"C- COMPILE" :PRINT•D- DELETE" 
PRINT" E - WRITE EOF• :PRINT"~F - FREE TEXT SPACE QUERY" :PRINT" L - LIST 
LINES ON DISPLAY• :PRINT"N - RENUMBER LINES" :PRINT 11 P - P.RINT LINES ON 
LINEPRINTER 11 

201 PRINT"R - READ BLOCK(S) C.ROM FILE" :PRINT•W - WRITE LINES TO FILE": 
PRINT:PRINT"PLEASE TYPE 1 RUN 1 AGAIN" :DELETE195-'-201 

202 CLEAR (1330) :GOSUB24: SA=29700:TA'=·32767:LM=-1 :ML=Nl :YY$=• *" :P=SA: 
PO=SA:LN=l 

203 P=PO:L$=••:1NPUTL$:A$=LEFT$(L$,1):GOSUB204:GOT0203 

204 IFA$=• R'l1 .. HEN242ELSEIFA$= 11 Ql-l,HEN25ELSEIFA$="W11-LHEN224ELSEIFA$=• I" 
THEN2 0 3ELSE IF A$=• L1\H.RA$ =• P 1H .HEN2 20ELSE IF A$ =8 J01\-LHEN2 2 2E LSE IF A$=• I?' 
THEN2 30EL SEIF A$=• i'ffl',HEN2 31 EL SE! FA$ =U::~-.HENGOSUB 2 56: PR I NT 
11~FREE= ~~.A-FA- 3: GOT02 0 3 

205 IFL$= 01H.HENRETURNELSE IFL$<"0 11 CRASC(L$) >=58THENPRINT" 7 7n :RETURN 
206 GOSUB209 
207 IFLN=OORLN>=MLTHENPRINT"??" :RETURN 
208 GOT0251 
2 09 X$ =" 11 :F ORX= 1T 05: B $=MI 0$ ( L $, X, 1 ) : I FB $ < = 11 9" llNDB $ > "'" 0111·.HENX $ =X $ +B $ : NEX 
210 LN=VAL(X$):L$=RIGHT$(L$,LEN(L$)+1-LEN(STR$(LN))):RETURN 
211 GOSUB249:1FQL>LNTHENP=SAELSEIFQL=LNTHENR£TURN 
21 2 GClSUB 2 4 8: IF QL < LNTHEN 21 2£ LS ERE TURN 
213 L$=L$+• 11 :BR=VAL(RIGHT$(L$,LEN{L$)-l)):TR=LEN(STR$('1R))+2: 

TR=VAL ( Ml 0$ ( L $, TR, LEN ( L $)-TR) ) : IF LEFT$ (RIGHT$ ( L $, 4 )1 ,1 ) "' 11 -'H .HENTR=ML 
214 IFMID$(L$,2,1)= 11 ."THENBR=LN 
215 IFBR>OANDTR=OTHENTR=BR 
216 IFTR+BR=OORTR>MLTHENTR=ML-1 
217 I FBR=OTHENBR= 1: RETURNELSERETURN 
218 IFLPTHENLPRINT• •LN;L$:RETURNELSEPRINT" •LN;L$:RETURN 
219 GOSUB213:LN=BR:GOT0211 
220 GOSUB219:LP=A$="P" 
2 21 I FQL >TRORPEEK ( 1 5359) THENRETURNEL SEGOSUB 2 50: GOSUB 218: GOSUB 248: GOT02 21 
2 2 2 GOS UB 2 1 9 
223 IFQL>TRTHENRETURNELSELN=QL:GOSUB255:GOSUB249:GOT0223 
224 BL$=u•:CM=1:GOSUB219 
2 2 5 I FQL >TRTHEN2 27ELSE I FQL < > OTHENGOSUB2 50: GOSUB 218:GOSU823 6 
226 GOSUB248:GOT0225 
2 2 7 I FB L $ < > • 11 THE NG OS U8 2 3A 
228 IFTR=ML-1THENINPUT"EOF" ;A$: IFA$="Y"THENGOSU8230 
229 A$ = 11 11 : INPUT •DELETE" ;A$: I FA$=• yn THENP=SA: LN=B R: GOSU8 211: GOT022 3 

ELSERETURN 
230 CM=1:L$="#EOF":LN=O:GOT0236 
231 GOSUB219: IFTR=BRORTR=ML-1THENTR=100: INPUT"NEW BASE";TR 
232 X=lO:INPUT"INCREMENT";X 
233 IFQL>"ML THENRETURNELSEV=VARPTR (TR): POKEP+l, PEEK (V): POKEP+2, PEEK(V+l): 

GOSUB248:TR=TR+X:GOT0233 
234 IFBL$~••THENRETURNELSEIFLM<>CMTHENINPUT 11 WRITE CASl";AS 
235 PR INT#-1 ,CHR$ ( 34) +BL$ :BL$= 11 ": LM=CM: RETURN 
236 B $=L$: I FLN< >OTHENA$=5TR$ (LN): L$=R IGHT$ (A$, LEN(A$ )-1) +L$ 
237 IFLEN(BL$)+LEN(L$)+2>240THENGOSUB234 
238 LG=LEN(L$):1FLG=130RLG=34THENL$=L$+" " 
239 BL$=BLS+CHRS(LEN(L$))+L$ 
240 I FB $ =" #EOF 11 0RLEFT $ ( 8$, 5) "'" $ l NCL" THENGOSUB 234 
241 RETURN 
242 BL$=••:GOSUB213 CM=3:FORl=1TOBR:GOSUB244:G0$UB243:1FL$="#EOF 11 THEN 

f1,-[TtiR~·,1El5~,[NF.X'f · 9.ETt,.'RN 

243 IFBL$= 1111 THENRETURNELSEG05UB247: IFL$= 11 /iEOF 11 THFNPRINTL$ RETURN 
ELSE :GOSUB 2 06: GOSUB 2 ·18:GOT0243 

244 
245 
246 
247 
248 
249 
250 

2 51 
252 

253 

254 
255 

256 
257 
258 
259 

IFLM<>CMTHENINPUT 11 READ CAS1 11 ;X$ 
I NP UT#-1, BL$: I FB L $ =" 11 THEN245E L SE LM=CM: RETURN 
IFBL$= 1 •THENGOSUB244 
L $=MID$ (BL$ , 2, AS C (BL$ ) ) : BL$ =RIGHT$ (BL$ , LEN (BU \ - l -.\ S ( ( Bl ' ) ) : R El tiR:i 
PO= P : P = P +PEE I< ( P ) 
QL=PEEK(P+1)+PEEK(P+2)*256:RETLJRN 
X=VAR PT R ( YY $ ) : POKE X, PE EK ( P) - 3: P = P + 3: V =VAR P Tk ( P ) : POKE X' I , Pu:!< ( V ! : 
POKE X + 2, PEEK ( V + 1 ) : P = P - 3: Li :cyy $ _: L N= PEE I< ( P + 1 ) +PEEK ( P > 2) * 2 5 6: RU URt: 

GOS.US 211 : I FQL= LNTHENGOSUB 2 5 5 
IFL$= 1111 THENRETURNELSEGOSU8256: IFTA-FA-7<LCN (L$ )TllFNPR ltH"WOHT t' If": 
P=PO: RETURN 
W=LEN(L$)+3:Ql=FA:Q2=FA+W:Q3=FA-P+1:XL=184:GOSLJD259:POKfP W· 
V=VARP TR ( LN) : POKE p + 1. r EEK ( v) : POKE p + 2' p EEK ( V+ 1 ) : FOR J = I rcn: u'·! (; 
POKEP+j+2,ASC(MID$(L$,J,1)):NEXT:FA=FA+PEr:K(P):r;oT0257 . 
GOSUB 211 
IFQL<>LNTHENRETLJRNELSEW=PECK(P) :GOSUB256:()1.cf' ;:J)c•P:(_•3 X-f' 
XL=l 76: GOSUB 2 59 :FA=F A-W:COSUfl 2 S7: RETURN 
FA=PEEK(TA-2)+PEFK(TA-1)"256:RETURN 
P.OKE TA- 2, PEEK (VAR P TR ( FA) ) : POK ff A- 1 , PU: I< (VAR P rn ( i-A ) r ·1 ) : f< le 

V= VAR PT R ( X) : l 8 $ =Z 8 $+CHR $ (PEEK ( V) ) +CH R $ ( Pt:F K ( V + 1 ) ) : RE Tlii<'1 
z 8 $ =CHR $ ( 3 3) : x =Q 1 : GOS U[J 2 5 8: z 8 $ =l;; $ +CHR $ ( 1 7 ) : x ::Q 2: c;os llll 2 5 
Z 8 $ = Z 8 $ +C It R $ ( 1 ) : X = () 3 : GOS Ui3 2 58 : Z 8 $ •• Z 8 $ +C llR $ i 2 i ) +Cl!R $ ( x I. ) •Cl i Ii \ i 1 (1 I ) _ 
GOSUB 260: RC TURN 

260 V=VARPTR(Z8$)1l.POKE!i;sn,f'iTi<(V) POKEili 'n,PEl:l'(V'i) \· R(I»· li.'R>I 

CONTINUED FROM PAGE (13) 

SAMPLE PROGRAM 
1790 
1800 
1810 

1820 
1825 
183() 
1840 
1842 
1850 
1860 
1870 
1880 
189() 
1900 
191() 
1920 
1930 
1940 
1950 
1960 
197(l 
1980 
1990 
2000 
2010 
2020 
2030 
2040 
2050 
2060 
2(17(1 
2080 
2090 

SEED:=RND<SEEDI• Xl=SEED MOD ao+20; 
SEED:=RNrt< SEED J; y:,,,SEED MOD J(H-10; 
REPEAT EIEGIN 

WRITE<HOME1CLEARtWirtE); 
AT< 10 ); WRITE(' BULLSEYE' H 
ATC74>1 WRITEC'CIN TINY PASCAL>' )I 
AH 202 >; WRITE<' HOW MANY STARS"~ ' ); 
IF MODE•'D' THEN BEGIN 

STARS:•20l WRlTECSTAR&t.CRll FOR Il•l ro 3000 DOI 
END ELSE BEGIN 

READ< STARS+>; 
END; 

END UNTIL ( ( STARS>=O) AND C STARS<lOO)); 
FOR 11•1 TO STARS DOJEGIN 

SEEDl.,RNDC SEED 1; XSiARS< I H=SEED ANJJ :t<>V7F i 
SEEDl•RNDISEED); YSTARSII >:•SEED MOD 481 

ENDl 
WHILE TARGETCX,YJ AND ALIVE DO BEGIN 

FOR 11•1 TO STARS DO BEGIN 
SET< 1' XS TARS( I h YSTARS( I 1); 

END; 
SIGHTS> 
ALI VE : =AC TI Ol'H 
IF ALIVE THEN BEGIN 

CHANGE; 
ENO; 

END; 
WRITE<HOME,WIOE/; 
IF ALIVE THEN WRITE<'YOU LET IT ESCAPE! 'I 
ELSE WRITE<' BULLSEYE! ' >i 
FOR !1=1 TO 5000 DOf 

END; 
ENO. 

------, .. -------------------·---·---·--·--·-···-·-



TRS- 80 Computing is published as often as monthly 
by Computer Information Exchange, Inc. , a non­
profit educational corporation, Lox !58, San Luis 
Rey CA 92068 , 

Subscription rates in the u·.s. are $15 for 12 is­
sues. To Canada and Mexico, subscriptions a r e 
$! SUS for 12 issues ; a ll other countries $27US. 

No advertising is accepted. Free editorial space 
is given any commercial product that m ight be of 
interest to TRS-80 users. One free page of dollars­
off coupons will be made available to product ven­
dors , on a space-available basis. 

ln keP.ninP-" with TRS-80 Comoutine:'s nonprofit ed-

ucational aims, any amount of matt.ria l from each 
issue may tie reproduced by any not-for-pr ofit 
educational group or institution, without prior re­
quest . Tearsheet is ap]Jreciated . Requi red c r edit 
inc ludes: "TRS- 80 Computing, box 158 , San Luis 
Rey CA 92068; $15 fo:· ! 0 issues. •· 

Clubs having regular newsle tters may receive 
TRS- 80 Computing in exchange, providing CIE is 
a lso g r anted s im ilar reprint pr ivileges . 

Organ izations or anyon0 having audio tapes or 
speakers that m ight be of interest to ClE reader s 
s hould submit them to manager editor Bill 
Mc Laughlin . If accepted , they will be typeset free , 
with a copy returned with the tape. Office phone is 

computer information exchange, • inc. 
Box 158, San Luis Rey CA 92068 

DATED MATERIAL 

ADDRESS CORRECTION REQUESTED 

(714) 757-4849. 

Editorial contributions of all kinds are requested 
isoftwar e , hardware and applications artic les, let­
te r s, P.tc .) :ind may be submitted ·either written or 
on cassette . 

••TRS- 80 is a Tandy Corporation trademark licens­
ed to Computer Information Exchange. Computer 
Inform ation Exchange is solely res ponsible for the 
edi toria l content of this magazine and is not an 
agent, s ubsidiary , or otherwise affiliated with Tandy · 
Corporation .*"' 

Nonprofit Org. 
U.S. POSTAGE 

PAID 
San Luis Rey CA 

PERMIT 4 


	01 (2)
	01
	01
	02
	03 (2)
	03 (3)
	03 (4)
	03 (5)
	03
	04
	05 (2)
	05 (3)
	05 (4)
	05 (5)
	05
	06 (2)
	06 (3)
	06
	07 (2)
	07 (3)
	07
	08 (2)
	08 (3)
	08
	08a
	08b
	09 (2)
	09 (3)
	09 (4)
	09 (5)
	09
	10 (2)
	10 (3)
	10 (4)
	10 (5)
	10 (6)
	10 (7)
	10
	11 (2)
	11
	12 (2)
	12
	13
	14
	15cut
	16 (2)
	16 (3)
	16
	99 (2)
	99
	99

